%I #9 Oct 17 2021 12:31:10
%S 101,110,202,220,303,330,404,440,505,550,606,660,707,770,808,880,909,
%T 990,1001,1010,1011,1100,1101,1110,2002,2020,2022,2200,2202,2220,3003,
%U 3030,3033,3300,3303,3330,4004,4040,4044,4400,4404,4440,5005,5050,5055,5500
%N Numbers n such that each decimal digit of n is equal to the difference of at least two other digits of n.
%C Let x(1)x(2)... x(q-1)x(q) denote the decimal expansion of a number n. The sequence lists the numbers n such that, for all index i, x(i) = x(j) - x(k) for some index j and k.
%C The sequence is infinite because a(n)*10^m for all integers m is also in the sequence.
%C All numbers of the sequence contain at least two identical decimal digits. a(n) contains at least one decimal digit equal to zero. The number
%C 12345678909 is the smallest element of the sequence containing 10 distinct digits.
%C The prime numbers of the sequence are 101, 10111, 10133, 10177,...
%C The squares of the sequence are 59049, 60516, 91809, 130321,...
%H Michel Lagneau, <a href="/A255966/b255966.txt">Table of n, a(n) for n = 1..10000</a>
%e 34707 is in the sequence because 3=7-4, 4=7-3,7=7-0 and 0=7-7.
%p with(numtheory):
%p for n from 100 to 10000 do:
%p x:=convert(n,base,10):n1:=nops(x):c:=0:T:=array(1..n1-1):
%p for nn from 1 to n1 do:
%p z:=x[nn]:
%p k:=0:
%p for j from 1 to n1 do:
%p if nn<>j
%p then
%p k:=k+1:T[k]:=x[j]:
%p else
%p fi:
%p od:
%p ii:=0:
%p for a from 1 to n1-1 while(ii=0) do:
%p for b from a+1 to n1-1 while(ii=0) do:
%p if z=abs(T[a]-T[b]) then ii:=1:c:=c+1:
%p else
%p fi:
%p od:od:
%p od:
%p if c=n1 then printf(`%d, `,n):
%p else
%p fi:
%p od:
%Y Cf. A255892, A255893, A255917.
%K nonn,base
%O 1,1
%A _Michel Lagneau_, Mar 12 2015
%E Comments corrected by _Harvey P. Dale_, Oct 17 2021