login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2) X (5+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3.
1

%I #8 Dec 20 2018 09:08:27

%S 733,340,256,268,286,290,472,630,674,748,814,866,1540,2190,2414,2668,

%T 2926,3170,5812,8430,9374,10348,11374,12386,22900,33390,37214,41068,

%U 45166,49250,91252,133230,148574,163948,180334,196706,364660,532590

%N Number of (n+2) X (5+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3.

%H R. H. Hardin, <a href="/A255798/b255798.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-6) - 4*a(n-12) for n>15.

%F Empirical g.f.: x*(733 + 340*x + 256*x^2 + 268*x^3 + 286*x^4 + 290*x^5 - 3193*x^6 - 1070*x^7 - 606*x^8 - 592*x^9 - 616*x^10 - 584*x^11 + 2112*x^12 + 400*x^13 + 68*x^14) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 - 2*x^3)*(1 + 2*x^3)). - _Colin Barker_, Dec 20 2018

%e Some solutions for n=4:

%e ..0..1..1..0..0..1..0....0..1..0..1..0..1..1....0..1..0..1..0..1..0

%e ..1..0..0..1..1..0..1....1..1..0..0..1..0..1....0..0..1..0..1..0..1

%e ..0..1..0..1..0..1..0....0..0..1..1..0..1..0....0..1..0..1..0..1..0

%e ..0..0..1..0..1..1..0....1..0..1..0..1..0..0....1..0..1..0..1..0..1

%e ..1..1..0..1..0..0..1....0..1..0..1..1..0..0....0..1..0..1..0..1..0

%e ..1..1..1..0..1..0..1....1..1..1..0..0..1..1....1..0..1..0..1..0..1

%Y Column 5 of A255801.

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 06 2015