login
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0
9

%I #4 Mar 06 2015 12:34:30

%S 90,177,177,361,270,361,715,491,491,715,1478,884,1050,884,1478,2969,

%T 1696,2141,2141,1696,2969,6186,3376,4908,5240,4908,3376,6186,12534,

%U 6668,11631,13857,13857,11631,6668,12534,26219,13654,28009,38889,43838,38889,28009

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0

%C Table starts

%C ....90...177....361.....715.....1478......2969.......6186......12534

%C ...177...270....491.....884.....1696......3376.......6668......13654

%C ...361...491...1050....2141.....4908.....11631......28009......69326

%C ...715...884...2141....5240....13857.....38889.....110678.....318089

%C ..1478..1696...4908...13857....43838....148202.....496995....1676288

%C ..2969..3376..11631...38889...148202....597517....2364049....9385686

%C ..6186..6668..28009..110678...496995...2364049...10902535...50280547

%C .12534.13654..69326..318089..1676288...9385686...50280547..269859998

%C .26219.28636.174169..924343..5721657..37725371..235622788.1476233444

%C .53487.60436.438621.2692440.19514341.151145267.1098780761.8022587091

%H R. H. Hardin, <a href="/A255792/b255792.txt">Table of n, a(n) for n = 1..758</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 12]

%F k=2: [order 38] for n>41

%F k=3: [order 46] for n>49

%F k=4: [order 44] for n>47

%F k=5: [order 62] for n>68

%F k=6: [order 76] for n>83

%e Some solutions for n=4 k=4

%e ..0..1..1..1..1..1....0..1..1..1..0..1....0..1..1..1..0..1....0..1..0..1..1..1

%e ..1..1..1..0..1..1....1..0..1..0..1..1....1..0..1..0..1..0....1..0..1..0..1..0

%e ..1..1..0..1..0..1....0..1..0..1..0..1....0..1..0..1..0..1....1..1..0..1..0..1

%e ..1..0..1..0..1..1....1..0..1..0..1..1....1..0..1..0..1..1....1..0..1..0..1..0

%e ..1..1..0..1..0..1....0..1..1..1..0..1....0..1..1..1..0..1....1..1..0..1..0..1

%e ..1..1..1..0..1..0....1..0..1..0..1..0....1..0..1..0..1..0....1..0..1..0..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Mar 06 2015