login
Number of (n+2)X(2+2) 0..1 arrays with no 3x3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0
1

%I #4 Mar 06 2015 12:30:11

%S 177,270,491,884,1696,3376,6668,13654,28636,60436,129004,277490,

%T 598982,1298324,2822028,6143688,13394892,29231560,63828278,139443252,

%U 304733610,666090304,1456209450,3183921392,6961973124,15224014438,33292204686

%N Number of (n+2)X(2+2) 0..1 arrays with no 3x3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0

%C Column 2 of A255792

%H R. H. Hardin, <a href="/A255786/b255786.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +2*a(n-2) +6*a(n-3) -4*a(n-4) -10*a(n-5) -8*a(n-6) -2*a(n-7) +3*a(n-8) -17*a(n-9) +14*a(n-10) +39*a(n-11) +49*a(n-12) +4*a(n-13) -26*a(n-14) +7*a(n-15) -20*a(n-16) -60*a(n-17) -96*a(n-18) -3*a(n-19) +70*a(n-20) +52*a(n-21) +15*a(n-22) +9*a(n-23) +44*a(n-24) -2*a(n-25) -45*a(n-26) -46*a(n-27) -2*a(n-28) +19*a(n-29) +2*a(n-30) -2*a(n-31) +4*a(n-32) +9*a(n-33) +a(n-34) -4*a(n-35) -3*a(n-36) +a(n-38) for n>41

%e Some solutions for n=4

%e ..1..0..1..0....1..1..1..1....1..0..1..0....1..1..0..1....1..0..0..1

%e ..1..1..1..1....1..1..0..1....0..1..0..1....1..0..1..1....0..0..1..0

%e ..1..0..1..0....1..0..1..0....1..0..1..0....1..1..0..1....0..1..0..0

%e ..0..1..0..1....0..1..0..1....0..1..0..1....1..0..1..1....1..0..0..1

%e ..1..0..1..1....1..0..1..0....1..0..1..1....1..1..0..1....0..0..1..0

%e ..1..1..1..1....1..1..0..1....0..1..1..1....1..0..1..1....0..1..0..0

%Y Cf. A255792

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 06 2015