login
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 1 and no row sum 0 and no column sum 0
9

%I #4 Mar 06 2015 11:39:55

%S 140,436,436,1512,1743,1512,5126,8672,8672,5126,17325,37281,58729,

%T 37281,17325,58707,161602,327340,327340,161602,58707,198635,726684,

%U 1968584,2413487,1968584,726684,198635,672183,3204754,11945779,18624528,18624528

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 1 and no row sum 0 and no column sum 0

%C Table starts

%C .....140.......436........1512.........5126..........17325............58707

%C .....436......1743........8672........37281.........161602...........726684

%C ....1512......8672.......58729.......327340........1968584.........11945779

%C ....5126.....37281......327340......2413487.......18624528........149549264

%C ...17325....161602.....1968584.....18624528......193188995.......2128300125

%C ...58707....726684....11945779....149549264.....2128300125......32105186518

%C ..198635...3204754....71461994...1182407902....22610019790.....463394276783

%C ..672183..14164510...428975207...9335360280...240398279606....6707363776886

%C .2274999..62954158..2589583742..74302402090..2591552387296...98614808002346

%C .7699081.278903301.15580188674.590258349021.27827020619579.1440705191111821

%H R. H. Hardin, <a href="/A255783/b255783.txt">Table of n, a(n) for n = 1..220</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 18]

%F k=2: [order 54] for n>57

%F k=3: [order 78] for n>83

%e Some solutions for n=3 k=4

%e ..0..1..0..1..0..1....0..1..1..1..0..0....0..0..1..0..1..1....0..1..0..1..0..1

%e ..1..1..1..1..1..0....1..1..1..1..1..1....1..1..1..1..1..0....0..1..1..1..0..1

%e ..1..1..1..1..1..1....0..1..1..1..1..1....0..1..1..1..1..1....1..1..1..1..1..1

%e ..1..1..1..1..1..0....1..1..1..1..1..0....1..1..1..1..1..0....1..1..1..1..0..1

%e ..1..1..1..0..1..0....1..0..1..1..0..1....1..1..1..0..1..0....1..1..0..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Mar 06 2015