login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: T(n,k) = total number of parts in all partitions of n into k distinct parts.
3

%I #36 Dec 18 2015 09:47:46

%S 1,3,4,2,7,5,6,14,12,20,3,8,39,7,15,52,19,13,74,41,18,102,68,4,12,134,

%T 120,9,28,158,189,24,14,208,283,51,24,259,390,107,24,284,582,173,5,31,

%U 361,749,311,11,18,409,1024,485,29,39,488,1289,767,61

%N Triangle read by rows: T(n,k) = total number of parts in all partitions of n into k distinct parts.

%C Column 1 is sigma = A000203.

%C Column 2 is A216669.

%C Row sums give A006128.

%C Row n has length A003056(n) hence the first element of column k is in row A000217(n).

%C The first positive element in column k is k.

%H Alois P. Heinz, <a href="/A255768/b255768.txt">Rows n = 1..500, flattened</a>

%F T(n,1) = A000203(n).

%e Triangle begins:

%e 1;

%e 3;

%e 4, 2;

%e 7, 5;

%e 6, 14;

%e 12, 20, 3;

%e 8, 39, 7;

%e 15, 52, 19;

%e 13, 74, 41;

%e 18, 102, 68, 4;

%e 12, 134, 120, 9;

%e 28, 158, 189, 24;

%e 14, 208, 283, 51;

%e 24, 259, 390, 107;

%e 24, 284, 582, 173, 5;

%e 31, 361, 749, 311, 11;

%e 18, 409, 1024, 485, 29;

%e 39, 488, 1289, 767, 61;

%e 20, 538, 1699, 1114, 127;

%e 42, 634, 2092, 1624, 238;

%e 32, 678, 2642, 2291, 403, 6;

%e ...

%Y Cf. A000041, A000203, A000217, A006128, A003056, A116608, A216669, A255767.

%K nonn,tabf,look

%O 1,2

%A _Omar E. Pol_, May 21 2015

%E a(27) and beyond from _Alois P. Heinz_, Jul 26 2015