login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (4+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Mar 05 2015 14:14:42

%S 30182,46367,71651,118925,203503,371616,619142,1072628,1797116,

%T 2967765,5071867,8405698,14522330,23891246,44755522,79091985,

%U 151022450,262118115,546460339,1023817596,2086472417,3735441860,8131658798,15548790150

%N Number of (4+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Row 4 of A255756

%H R. H. Hardin, <a href="/A255759/b255759.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) -17*a(n-2) +33*a(n-3) -30*a(n-4) -61*a(n-5) +285*a(n-6) -618*a(n-7) +911*a(n-8) -784*a(n-9) +7*a(n-10) +1268*a(n-11) -2683*a(n-12) +3502*a(n-13) -3369*a(n-14) +2710*a(n-15) -1886*a(n-16) +1406*a(n-17) -1314*a(n-18) +891*a(n-19) +13*a(n-20) -1337*a(n-21) +2744*a(n-22) -3452*a(n-23) +3356*a(n-24) -2668*a(n-25) +1664*a(n-26) -832*a(n-27) +320*a(n-28) -64*a(n-29) for n>53

%e Some solutions for n=4

%e ..0..1..1..1..1..1....0..1..0..1..0..0....0..1..0..0..0..1....0..1..1..0..1..0

%e ..1..1..1..1..1..1....0..0..1..1..0..1....0..1..1..1..1..0....1..1..1..1..1..0

%e ..1..1..1..1..1..1....1..0..1..0..1..1....0..1..1..1..1..0....0..1..1..1..0..0

%e ..0..1..1..1..0..0....1..1..0..0..1..1....1..0..0..0..0..0....1..1..0..0..1..1

%e ..1..1..0..0..1..1....0..1..0..1..0..1....1..0..0..0..0..0....0..1..1..0..0..1

%e ..1..0..0..0..0..0....1..1..1..1..0..0....0..1..1..1..1..0....1..0..0..1..1..0

%Y Cf. A255756

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 05 2015