login
Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Mar 05 2015 14:13:02

%S 2485,7765,24536,72884,180619,386060,778827,1580226,3130455,5810558,

%T 10404621,19209556,35754204,64042438,112969799,211210444,404550623,

%U 741978523,1340845547,2623013518,5281311943,10042459246,18653169405

%N Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Row 2 of A255756

%H R. H. Hardin, <a href="/A255757/b255757.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) -2*a(n-2) +a(n-3) +24*a(n-4) -75*a(n-5) +38*a(n-6) -15*a(n-7) -151*a(n-8) +562*a(n-9) -119*a(n-10) -17*a(n-11) +349*a(n-12) -2028*a(n-13) -766*a(n-14) +914*a(n-15) +69*a(n-16) +4267*a(n-17) +6068*a(n-18) -4235*a(n-19) -2860*a(n-20) -5903*a(n-21) -17549*a(n-22) +8002*a(n-23) +10603*a(n-24) +5425*a(n-25) +27907*a(n-26) -8034*a(n-27) -23136*a(n-28) -2946*a(n-29) -26559*a(n-30) +11783*a(n-31) +36775*a(n-32) +4246*a(n-33) +12190*a(n-34) -27690*a(n-35) -58236*a(n-36) -16478*a(n-37) +1877*a(n-38) +40361*a(n-39) +94751*a(n-40) +35880*a(n-41) +6503*a(n-42) -35231*a(n-43) -115497*a(n-44) -54000*a(n-45) -32463*a(n-46) +17921*a(n-47) +88249*a(n-48) +62850*a(n-49) +39132*a(n-50) +5078*a(n-51) -42124*a(n-52) -50026*a(n-53) -21058*a(n-54) -20330*a(n-55) +16513*a(n-56) +21251*a(n-57) +6717*a(n-58) +15920*a(n-59) -7160*a(n-60) -1952*a(n-61) -3024*a(n-62) -4684*a(n-63) +1784*a(n-64) -1284*a(n-65) +1252*a(n-66) +208*a(n-67) +96*a(n-68) +208*a(n-69) -144*a(n-70) +48*a(n-71) -48*a(n-72) for n>85

%e Some solutions for n=4

%e ..0..0..1..1..1..1....0..0..0..1..0..0....0..1..1..1..1..0....1..0..0..0..0..1

%e ..1..0..0..1..0..0....1..0..1..1..0..1....0..1..1..1..0..0....1..1..1..1..0..1

%e ..1..1..0..0..0..1....1..1..1..0..0..0....0..1..0..0..0..0....1..1..0..0..0..0

%e ..1..0..0..0..0..0....0..0..0..1..1..0....1..1..0..0..0..1....0..0..0..0..0..0

%Y Cf. A255756

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 05 2015