login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least number k > 0 such that (2*n-1)^k - 2 is prime, or 0 if no such number exists.
5

%I #32 Jul 23 2017 22:15:21

%S 0,2,1,1,1,4,1,1,6,1,1,24,1,2,2,1,1,2,2,1,4,1,1,2,1,8,4,1,12,4,1,1,8,

%T 3,1,2,1,1,2,38,1,4,1,4,2,1,2,4,747,1,4,1,1,2,1,1,10,1,2,2,2,6,42,2,1,

%U 2,1,2,10,1,1,4,2,16,50,1,1,2,22,1,2,38

%N Least number k > 0 such that (2*n-1)^k - 2 is prime, or 0 if no such number exists.

%H Michel Marcus, <a href="/A255707/b255707.txt">Table of n, a(n) for n = 1..152</a> (terms 1..143 from Robert Price)

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_887.htm">Puzzle 887. p(n)^c-2 is prime</a>, The Prime Puzzles and Problems Connection.

%F a(A098090(n)) = 1. - _Michel Marcus_, Mar 03 2015

%t lst = {0}; For[n = 2, n ≤ 143, n++, For[k = 1, k >= 1, k++, If[PrimeQ[(2*n - 1)^k - 2], AppendTo[lst, k]; Break[]]]]; lst

%o (PARI) a(n)=if(n==1,return(0));k=1;while(k,if(ispseudoprime((2*n-1)^k-2),return(k));k++)

%o vector(50,n,a(n)) \\ _Derek Orr_, Mar 03 2015

%Y Cf. A079706, A084712, A084713, A084714, A098090, A138066.

%K nonn

%O 1,2

%A _Robert Price_, Mar 02 2015