%I #23 Sep 05 2018 12:33:34
%S 1,0,1,0,1,1,0,2,1,1,0,4,3,1,1,0,8,7,3,1,1,0,17,18,8,3,1,1,0,36,45,21,
%T 8,3,1,1,0,79,116,56,22,8,3,1,1,0,175,298,152,59,22,8,3,1,1,0,395,776,
%U 413,163,60,22,8,3,1,1,0,899,2025,1131,450,166,60,22,8,3,1,1
%N Number T(n,k) of n-node rooted trees in which the maximal number of nodes in paths starting at a leaf and ending at the first branching node or at the root equals k; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
%H Alois P. Heinz, <a href="/A255704/b255704.txt">Rows n = 1..141, flattened</a>
%F T(n,1) = A255636(n,1), T(n,k) = A255636(n,k) - A255636(n,k-1) for k>1.
%e : o o o o o o o
%e : /( )\ /|\ / \ / \ | | |
%e : o o o o o o o o o o o o o o
%e : | | | | / \ / \ /|\ / \ |
%e : o o o o o o o o o o o o o o
%e : | | | | / \
%e : o o o o o o
%e : |
%e : T(6,3) = 7 o
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 0, 1, 1;
%e 0, 2, 1, 1;
%e 0, 4, 3, 1, 1;
%e 0, 8, 7, 3, 1, 1;
%e 0, 17, 18, 8, 3, 1, 1;
%e 0, 36, 45, 21, 8, 3, 1, 1;
%e 0, 79, 116, 56, 22, 8, 3, 1, 1;
%e 0, 175, 298, 152, 59, 22, 8, 3, 1, 1;
%p with(numtheory):
%p g:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*(g(d-1, k)-
%p `if`(d=k, 1, 0)), d=divisors(j))*g(n-j, k), j=1..n)/n)
%p end:
%p T:= (n, k)-> g(n-1, k) -`if`(k=1, 0, g(n-1, k-1)):
%p seq(seq(T(n, k), k=1..n), n=1..14);
%t g[n_, k_] := g[n, k] = If[n == 0, 1, Sum[DivisorSum[j, #*(g[#-1, k] - If[# == k, 1, 0])&] * g[n-j, k], {j, 1, n}]/n];
%t T[n_, k_] := g[n-1, k] - If[k == 1, 0, g[n-1, k-1]];
%t Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Mar 24 2017, translated from Maple *)
%Y Columns k=1-10 give: A063524, A002955 (for n>1), A318899, A318900, A318901, A318902, A318903, A318904, A318905, A318906.
%Y Row sums give A000081.
%Y T(2*n+1,n+1) gives A255705.
%Y Cf. A255636.
%K nonn,tabl
%O 1,8
%A _Alois P. Heinz_, Mar 02 2015