login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255676 E.g.f. satisfies: A'(x) = (1 + A(x))*(1 + A(x)^2). 0

%I #12 Jul 17 2015 10:03:11

%S 1,1,3,15,81,561,4683,44415,479241,5793921,77332563,1130944815,

%T 17984844801,308888337681,5698762943643,112401325405215,

%U 2360158641832761,52564270139375841,1237645528139173923,30717272450961249615,801500394828539219121

%N E.g.f. satisfies: A'(x) = (1 + A(x))*(1 + A(x)^2).

%F E.g.f.: Series_Reversion( Integral 1/((1+x)*(1+x^2)) dx ).

%F E.g.f.: Series_Reversion( (log((1+x)^2/(1+x^2)) + 2*atan(x))/4 ).

%F E.g.f. A(x) satisfies: (1 + A(x))^2/(1 + A(x)^2) = exp(4*x) / exp(2*atan(A(x))).

%F a(n) ~ 2^(2*n+1) * n^n / (exp(n) * Pi^(n+1/2)). - _Vaclav Kotesovec_, Jul 17 2015

%e E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 15*x^4/4! + 81*x^5/5! + 561*x^6/6! +..

%e where

%e (1 + A(x))*(1 + A(x)^2) = 1 + x + 3*x^2/2! + 15*x^3/3! + 81*x^4/4! + 561*x^5/5! +...+ a(n+1)*x^n/n! +...

%e The series reversion of the e.g.f. equals Integral 1/(1+x+x^2+x^3) dx:

%e Series_Reversion(A(x)) = x - x^2/2 + x^5/5 - x^6/6 + x^9/9 - x^10/10 + x^13/13 - x^14/16 + x^17/17 - x^18/18 +...

%e which equals (log((1+x)^2/(1+x^2)) + 2*atan(x))/4.

%t Rest[CoefficientList[InverseSeries[Series[(Log[(1+x)^2/(1+x^2)] + 2*ArcTan[x])/4, {x, 0, 20}], x],x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jul 17 2015 *)

%o (PARI) {a(n) = local(A=x); for(i=1,n, A = intformal( (1+A)*(1+A^2) +x*O(x^n))); n!*polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) {a(n) = local(A=x); A = serreverse( intformal( 1/((1+x)*(1+x^2) +x*O(x^n)) )); n!*polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jul 10 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 07:34 EDT 2023. Contains 363195 sequences. (Running on oeis4.)