login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies: A'(x) = (1 + A(x))*(1 + A(x)^2).
0

%I #12 Jul 17 2015 10:03:11

%S 1,1,3,15,81,561,4683,44415,479241,5793921,77332563,1130944815,

%T 17984844801,308888337681,5698762943643,112401325405215,

%U 2360158641832761,52564270139375841,1237645528139173923,30717272450961249615,801500394828539219121

%N E.g.f. satisfies: A'(x) = (1 + A(x))*(1 + A(x)^2).

%F E.g.f.: Series_Reversion( Integral 1/((1+x)*(1+x^2)) dx ).

%F E.g.f.: Series_Reversion( (log((1+x)^2/(1+x^2)) + 2*atan(x))/4 ).

%F E.g.f. A(x) satisfies: (1 + A(x))^2/(1 + A(x)^2) = exp(4*x) / exp(2*atan(A(x))).

%F a(n) ~ 2^(2*n+1) * n^n / (exp(n) * Pi^(n+1/2)). - _Vaclav Kotesovec_, Jul 17 2015

%e E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 15*x^4/4! + 81*x^5/5! + 561*x^6/6! +..

%e where

%e (1 + A(x))*(1 + A(x)^2) = 1 + x + 3*x^2/2! + 15*x^3/3! + 81*x^4/4! + 561*x^5/5! +...+ a(n+1)*x^n/n! +...

%e The series reversion of the e.g.f. equals Integral 1/(1+x+x^2+x^3) dx:

%e Series_Reversion(A(x)) = x - x^2/2 + x^5/5 - x^6/6 + x^9/9 - x^10/10 + x^13/13 - x^14/16 + x^17/17 - x^18/18 +...

%e which equals (log((1+x)^2/(1+x^2)) + 2*atan(x))/4.

%t Rest[CoefficientList[InverseSeries[Series[(Log[(1+x)^2/(1+x^2)] + 2*ArcTan[x])/4, {x, 0, 20}], x],x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jul 17 2015 *)

%o (PARI) {a(n) = local(A=x); for(i=1,n, A = intformal( (1+A)*(1+A^2) +x*O(x^n))); n!*polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%o (PARI) {a(n) = local(A=x); A = serreverse( intformal( 1/((1+x)*(1+x^2) +x*O(x^n)) )); n!*polcoeff(A,n)}

%o for(n=1,30,print1(a(n),", "))

%K nonn

%O 1,3

%A _Paul D. Hanna_, Jul 10 2015