The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255655 The sum of the odd terms in row n of A050873. 1
 1, 1, 5, 2, 9, 5, 13, 4, 21, 9, 21, 10, 25, 13, 45, 8, 33, 21, 37, 18, 65, 21, 45, 20, 65, 25, 81, 26, 57, 45, 61, 16, 105, 33, 117, 42, 73, 37, 125, 36, 81, 65, 85, 42, 189, 45, 93, 40, 133, 65, 165, 50, 105, 81, 189, 52, 185, 57, 117, 90 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS For odd n, a(n)=A018804(n). LINKS FORMULA Dirichlet g.f.: zeta(s-1)^2*(1 - 2^(1-s))/zeta(s). a(n) = Sum_{d|n} A193356(d)*A000010(n/d). - Werner Schulte, Feb 04 2018 Multiplicative with a(2^e)=2^(e-1) for e>0 and a(p^e)=((p-1)*e+p)*p^(e-1) for e>0 and p>2. - Werner Schulte, Feb 04 2018 Sum_{k=1..n} a(k) ~ 3*n^2 / (2*Pi^2) * (log(n) - 1/2 + 2*gamma + log(2) - 6*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Feb 02 2019 EXAMPLE a(10)=9 because row 10 of A050873 is gcd(10,k) for k=1,2,...10: 1, 2, 1, 2, 5, 2, 1, 2, 1, 10. If we sum the odd terms in this row we have 1+1+5+1+1=9. MATHEMATICA nn = 60; f[list_, i_] := list[[i]]; a =Table[EulerPhi[n], {n, 1, nn}]; b = Table[If[OddQ[n], n, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] Table[Sum[(d*(1-(-1)^d)/2)*EulerPhi[n/d], {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 02 2019 *) PROG (PARI) a(n) = sum(k=1, n, my(g = gcd(n, k)); if (g % 2, g, 0)); \\ Michel Marcus, Feb 05 2018 CROSSREFS Cf. A000010, A018804, A050873, A193356. Sequence in context: A051356 A188933 A306648 * A177345 A209304 A258503 Adjacent sequences:  A255652 A255653 A255654 * A255656 A255657 A255658 KEYWORD nonn,mult AUTHOR Geoffrey Critzer, Mar 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:12 EST 2021. Contains 349532 sequences. (Running on oeis4.)