Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Feb 28 2015 11:37:13
%S 3834,9186,23298,60390,156563,405687,1047141,2656032,6682971,16925280,
%T 43249522,110788455,283416570,724728391,1851244551,4719321474,
%U 12020625692,30651759318,78266507064,199890070327,510335125536
%N Number of length n+7 0..2 arrays with at most two downsteps in every 7 consecutive neighbor pairs
%C Column 7 of A255622
%H R. H. Hardin, <a href="/A255621/b255621.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +12*a(n-4) -18*a(n-5) +7*a(n-6) +153*a(n-7) -237*a(n-8) +95*a(n-9) -885*a(n-11) +1087*a(n-12) -123*a(n-13) -6870*a(n-14) +8984*a(n-15) -1401*a(n-16) -1260*a(n-17) +11772*a(n-18) -16266*a(n-19) +6696*a(n-20) +69471*a(n-21) -114183*a(n-22) +47448*a(n-23) -100*a(n-24) -17955*a(n-25) +5628*a(n-26) -700*a(n-27) -2565*a(n-28) +804*a(n-29) -100*a(n-30)
%e Some solutions for n=4
%e ..2....1....2....1....1....2....2....2....1....0....0....1....2....1....0....0
%e ..0....2....0....2....1....0....0....2....2....0....0....1....2....2....1....0
%e ..0....2....1....0....1....0....0....2....2....0....1....2....2....2....1....2
%e ..0....1....1....1....2....0....2....2....2....0....0....2....0....0....2....0
%e ..1....2....2....0....0....0....2....2....0....1....0....1....0....0....2....0
%e ..0....2....0....0....1....1....2....0....1....1....2....1....0....1....0....0
%e ..1....2....1....0....0....0....1....0....2....0....2....2....1....1....0....0
%e ..2....1....2....0....2....1....2....1....0....0....2....2....2....1....0....1
%e ..2....2....2....0....2....0....0....1....0....1....1....0....0....1....0....1
%e ..2....2....0....0....2....0....0....1....0....1....1....2....2....1....2....2
%e ..2....2....1....2....2....2....2....1....1....0....2....2....2....1....2....2
%Y Cf. A255622
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 28 2015