Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Mar 11 2017 20:57:51
%S 1,80,80,624,80,6400,624,16480,80,6400,6400,49920,624,49920,16480,
%T 221888,80,6400,6400,49920,6400,512000,49920,1318400,624,49920,49920,
%U 389376,16480,1318400,221888,4245888,80,6400,6400,49920,6400,512000,49920,1318400,6400,512000,512000,3993600,49920,3993600,1318400
%N Number of ON cells after n generations in 4-D cellular automaton defined by 4-dimensional analog of Moore neighborhood, when started with a single ON cell at generation 0.
%C Run length transform of A255478.
%H Shalosh B. Ekhad, <a href="/A255477/a255477.txt">Details about A255477 and A255478</a>
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796, 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>.
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249, 2015.
%H N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: <a href="https://vimeo.com/119073818">Part 1</a>, <a href="https://vimeo.com/119073819">Part 2</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168, 2015
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%Y Cf. A255478.
%Y See also A160239 and A246031 for analogs in 2 and 3 dimensions.
%K nonn
%O 0,2
%A _Doron Zeilberger_, Feb 26 2015