login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lower triangular matrix describing the shape of a half hyperbola in the Dirichlet divisor problem.
0

%I #95 May 06 2020 02:42:20

%S 1,1,1,1,1,1,0,2,1,1,0,2,1,1,1,0,1,2,1,1,1,0,1,2,1,1,1,1,0,1,1,2,1,1,

%T 1,1,0,0,2,2,1,1,1,1,1,0,0,2,1,2,1,1,1,1,1,0,0,2,1,2,1,1,1,1,1,1,0,0,

%U 1,2,1,2,1,1,1,1,1,1

%N Lower triangular matrix describing the shape of a half hyperbola in the Dirichlet divisor problem.

%C The sum of terms of row n is n. Length of row n is n.

%C From _Mats Granvik_, Feb 21 2016: (Start)

%C A006218(n) = (n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,k)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).

%C A006218(n) = -((n^2 - ((2*Sum_{kk=1..n} Sum_{k=1..kk} T(n,n-k+1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).

%C (End)

%C From _Mats Granvik_, May 28 2017: (Start)

%C A006218(n) = (n^2 - (2*(Sum_{k=1..n} T(n, k)*(n - k + 1)) - n)) + 2*n - round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n))).

%C A006218(n) = -((n^2 - (2*(Sum_{k=1..n} T(n, n - k + 1)*(n - k + 1)) - n)) - 2*n + round(1 + (1/2)*(-3 + sqrt(n) + sqrt(1 + n)))).

%C (End)

%C From _Mats Granvik_, Sep 07 2017: (Start)

%C It appears that:

%C The number of 0's in row n is equal to the number of 2's in row n and their number is given by A000196(n) - 1.

%C The number of 1's in column k is given by A152948(k+2).

%C The number of 2's in column k is given by A000096(k-1).

%C The row index of the last nonzero entry in column k is given by A005563(k).

%C (End)

%C From _Mats Granvik_, Oct 06 2018: (Start)

%C The smallest k such that T(n,k)=2 is given by A079643(n) = floor(n/floor(sqrt(n))).

%C This gives the lower bound: A006218(n) >= A094761(n) + A079643(n)*2*(A000196(n)-1).

%C <=> A006218(n) >= 2*n - (floor(sqrt(n)))^2 + floor(n/floor(sqrt(n)))*2*floor(sqrt(n)-1).

%C The average of k:s such that T(n,k)=2, for n>3 is given by:

%C b(n) = Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2)))/floor(sqrt(n)-1).

%C This gives A006218(n) = 2*n - (floor(sqrt(n)))^2 + b(n)*2*floor(sqrt(n)-1) = 2*n - (floor(sqrt(n)))^2 + (Sum_{k=1..n} (k*floor(abs(T(n, k)-1/2))))*2, for n>3.

%C The largest k such that T(n,k)=2 is given by A004526(n) = floor(n/2).

%C This gives the upper bound: A006218(n) <= A094761(n) + A004526(n)*2*(A000196(n)-1).

%C <=> A006218(n) <= 2*n - (floor(sqrt(n)))^2 + floor(n/2)*2*floor(sqrt(n)-1).

%C The lower bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 21, 23, ...

%C Sequence A006218 starts: 1, 3, 5, 8, 10, 14, 16, 20, 23, 27, ...

%C The upper bound starts: 1, 3, 5, 8, 10, 14, 16, 20, 25, 31, ...

%C (End)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletDivisorProblem.html">Dirichlet Divisor Problem</a>

%F See Mathematica program.

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 0, 2, 1, 1;

%e 0, 2, 1, 1, 1;

%e 0, 1, 2, 1, 1, 1;

%e 0, 1, 2, 1, 1, 1, 1;

%e 0, 1, 1, 2, 1, 1, 1, 1;

%e 0, 0, 2, 2, 1, 1, 1, 1, 1;

%e 0, 0, 2, 1, 2, 1, 1, 1, 1, 1;

%e 0, 0, 2, 1, 2, 1, 1, 1, 1, 1, 1;

%e 0, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1;

%t (* From _Mats Granvik_, Feb 21 2016: (Start) *)

%t nn = 12;

%t T = Table[

%t Sum[Table[

%t If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,

%t If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,

%t 1, r}], {k, 1, r}], {r, 1, nn}];

%t Flatten[T]

%t A006218a = Table[(n^2 - (2*Sum[Sum[T[[n, k]], {k, 1, kk}], {kk, 1, n}] -

%t n)) + 2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n,

%t 1, nn}];

%t A006218b = -Table[(n^2 - (2*

%t Sum[Sum[T[[n, n - k + 1]], {k, 1, kk}], {kk, 1, n}] - n)) -

%t 2*n + Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];

%t (A006218b - A006218a);

%t (* (End) *)

%t (* From _Mats Granvik_, May 28 2017: (Start) *)

%t nn = 12;

%t T = Table[

%t Sum[Table[

%t If[And[If[n*k <= r, If[n >= k, 1, 0], 0] == 1,

%t If[(n + 1)*(k + 1) <= r, If[n >= k, 1, 0], 0] == 0], 1, 0], {n,

%t 1, r}], {k, 1, r}], {r, 1, nn}];

%t Flatten[T]

%t A006218a = Table[(n^2 - (2*Sum[T[[n, k]]*(n - k + 1), {k, 1, n}] - n)) +

%t 2*n - Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])], {n, 1, nn}];

%t A006218b = Table[-((n^2 - (2*Sum[T[[n, n - k + 1]]*(n - k + 1), {k, 1, n}] -

%t n)) - 2*n +

%t Round[1 + (1/2)*(-3 + Sqrt[n] + Sqrt[1 + n])]), {n, 1, nn}];

%t (A006218b - A006218a);

%t (* (End) *)

%Y Cf. A000096, A000196, A004526, A005563, A006218, A079643, A094761, A094820, A152948.

%K tabl,nonn

%O 1,8

%A _Mats Granvik_, May 31 2015