

A255263


Differences between the total number of ON cells at stage n of twodimensional cellular automaton defined by "Rule 750" using the von Neumann neighborhood and the total number of toothpicks in the toothpick structure A139250 that are parallel to the initial toothpick, after n odd rounds.


3



0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 12, 20, 0, 0, 0, 4, 0, 4, 12, 20, 0, 4, 12, 20, 12, 36, 80, 68, 0, 0, 0, 4, 0, 4, 12, 20, 0, 4, 12, 20, 12, 36, 80, 68, 0, 4, 12, 20, 12, 36, 80, 68, 12, 36, 80, 84, 96, 208, 352, 196, 0, 0, 0, 4, 0, 4, 12, 20, 0, 4, 12, 20, 12, 36, 80, 68, 0, 4, 12, 20, 12, 36, 80, 68, 12, 36, 80
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


COMMENTS

It appears that the graph of A162795 lies between the graphs of A147562 and A169707.
It appears that a(n) = 0 if and only if n is a member of A048645.


LINKS

Table of n, a(n) for n=1..90.
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Index entries for sequences related to cellular automata


FORMULA

a(n) = A169707(n)  A162795(n).


EXAMPLE

Written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782:
0;
0;
0,0;
0,0,4,0;
0,0,4,0,4,12,20,0;
0,0,4,0,4,12,20,0,4,12,20,12,36,80,68,0;
0,0,4,0,4,12,20,0,4,12,20,12,36,80,68,0,4,12,20,12,36,80,68,12,36,80,84,96,208,352,196,0;
...
It appears that if k is a power of 2 then T(j,k) = 0.


CROSSREFS

Cf. A011782, A048645, A139250, A160164, A162796, A169707, A147562, A255166, A255264.
Sequence in context: A028606 A284445 A288775 * A153011 A173532 A270029
Adjacent sequences: A255260 A255261 A255262 * A255264 A255265 A255266


KEYWORD

nonn,tabf


AUTHOR

Omar E. Pol, Feb 19 2015


STATUS

approved



