login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 12*k+1, 24*k+1, 36*k+1 and 72*k+1 are all prime.
2

%I #31 Dec 20 2024 17:43:51

%S 28,103,190,253,355,848,1328,1783,1898,1958,1988,2170,2213,3003,3533,

%T 3808,3913,3988,4450,4488,4593,4800,5460,5808,5853,6448,6545,6903,

%U 7103,7238,7295,7400,7483,7693,8533,9310,9780,10260,10885,12185,12628,15513,16163

%N Numbers k such that 12*k+1, 24*k+1, 36*k+1 and 72*k+1 are all prime.

%H Amiram Eldar, <a href="/A255218/b255218.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)

%H Umberto Cerruti, <a href="/A255218/a255218.pdf">Pseudoprimi di Fermat e numeri di Carmichael</a> (in Italian), p. 14.

%t Select[Range[10000], PrimeQ[12 # + 1] && PrimeQ[24 # + 1] && PrimeQ[36 # + 1] && PrimeQ[72 # + 1] &]

%t Select[Range[17000],AllTrue[{12,24,36,72}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, May 16 2016 *)

%o (Magma) [n: n in [0..20000] | IsPrime(12*n+1) and IsPrime(24*n+1) and IsPrime(36*n+1) and IsPrime(72*n+1)];

%o (Magma) [n: n in [0..20000] | forall{i: i in Divisors(6) | IsPrime(12*i*n+1)}];

%Y Subsequence of A110801 and A111174.

%Y Cf. A255578.

%K nonn,changed

%O 1,1

%A _Vincenzo Librandi_, Feb 26 2015