login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that 12*k+1, 24*k+1, 36*k+1 and 72*k+1 are all prime.
2

%I #31 Dec 20 2024 17:43:51

%S 28,103,190,253,355,848,1328,1783,1898,1958,1988,2170,2213,3003,3533,

%T 3808,3913,3988,4450,4488,4593,4800,5460,5808,5853,6448,6545,6903,

%U 7103,7238,7295,7400,7483,7693,8533,9310,9780,10260,10885,12185,12628,15513,16163

%N Numbers k such that 12*k+1, 24*k+1, 36*k+1 and 72*k+1 are all prime.

%H Amiram Eldar, <a href="/A255218/b255218.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harvey P. Dale)

%H Umberto Cerruti, <a href="/A255218/a255218.pdf">Pseudoprimi di Fermat e numeri di Carmichael</a> (in Italian), p. 14.

%t Select[Range[10000], PrimeQ[12 # + 1] && PrimeQ[24 # + 1] && PrimeQ[36 # + 1] && PrimeQ[72 # + 1] &]

%t Select[Range[17000],AllTrue[{12,24,36,72}#+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, May 16 2016 *)

%o (Magma) [n: n in [0..20000] | IsPrime(12*n+1) and IsPrime(24*n+1) and IsPrime(36*n+1) and IsPrime(72*n+1)];

%o (Magma) [n: n in [0..20000] | forall{i: i in Divisors(6) | IsPrime(12*i*n+1)}];

%Y Subsequence of A110801 and A111174.

%Y Cf. A255578.

%K nonn

%O 1,1

%A _Vincenzo Librandi_, Feb 26 2015