Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Apr 08 2017 05:19:37
%S 1,0,5,6,35,80,306,880,3003,9384,31070,100226,330015,1079392,3559001,
%T 11724930,38772445,128313480,425553513,1412911148,4697992880,
%U 15637660896,52109660575,173809285676,580261793715,1938778221800,6482844907190,21692435752290,72633495206803
%N Number of dissections of a convex polygon with n+3 sides that have exactly one triangle, and that triangle shares at least one side with the exterior polygon.
%H G. C. Greubel, <a href="/A255197/b255197.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = (n+3)/(n+2) * Sum_{k=1..n/2} C(n+k+1,k)*C(n-k-1,k-1)*(n+2*k)/(n+k+1) , n>0.
%F Recurrence: 5*(n-2)*n*(n+1)^2*(n+2)^2*(481*n^2 - 1003*n + 540)*a(n) = 4*n*(n+1)^2*(n+3)*(962*n^4 - 3449*n^3 + 3262*n^2 - 784*n - 180)*a(n-1) + 4*(n-1)*n*(n+2)*(n+3)*(3848*n^4 - 11872*n^3 + 12073*n^2 - 3572*n - 180)*a(n-2) - 2*(n-2)*(n-1)*(n+1)*(n+2)*(n+3)*(2*n-5)*(481*n^2 - 41*n + 18)*a(n-3). - _Vaclav Kotesovec_, Feb 19 2015
%F a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.838651324525827608604668464... is the root of the equation 169 + 157184*c^2 - 275872*c^4 + 74000*c^6 = 0. - _Vaclav Kotesovec_, Feb 21 2015
%p a:=n->(n+3)/(n+2)*sum(binomial(n+k+1,k)*binomial(n-k-1,k-1)*(n+2*k)/(n+k+1),k=1..trunc(n/2)): (1,seq(a(n), n=1..30));
%t Flatten[{1,Table[(n+3)/(n+2)*Sum[Binomial[n+k+1,k]*Binomial[n-k-1,k-1]*(n+2k)/(n+k+1),{k,Floor[n/2]}],{n,20}]}] (* _Vaclav Kotesovec_, Feb 19 2015 *)
%o (PARI) a(n) = if (n==0, 1, (n+3)*sum(k=1, n\2, binomial(n+k+1,k)*binomial(n-k-1,k-1)*(n+2*k)/(n+k+1))/(n+2)); \\ _Michel Marcus_, Mar 03 2015
%Y Cf. A253192.
%K nonn,easy
%O 0,3
%A _Michael D. Weiner_, Feb 16 2015
%E Definition clarified by _Michael D. Weiner_, Mar 09 2015