Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 05 2022 07:45:44
%S 1,0,-1,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-4,-3,-2,-1,0,1,2,3,4,5,4,3,2,1,
%T 0,-1,-2,-3,-4,-5,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,6,5,4,3,2,1,0,-1,
%U -2,-3,-4,-5,-6,-7,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3
%N Expansion of phi(-x) / (1 - x)^2 in powers of x where phi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H G. C. Greubel, <a href="/A255175/b255175.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F G.f.: Product_{k>0} (1 - x^(2*k)) * (1 - x^(2*k+1))^2.
%F A053615(n) = abs(A196199(n)) = abs(a(n-1)).
%F Euler transform of -A134451.
%F a(n) = Sum_{i=0..n}( (-1)^(floor(sqrt(i))) ). - _John M. Campbell_, Dec 22 2016
%e G.f. = 1 - x^2 - 2*x^3 - x^4 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + x^10 - x^12 + ...
%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] / (1 - x)^2, {x, 0, n}];
%t a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^(Mod[k, 2] + 1), {k, 2, n}], {x, 0, n}];
%t a[ n_] := If[ n < 0, 0, With[{m = Floor[ Sqrt[ n + 1]]}, (-1)^m (n + 1 - m - m^2)]];
%t Table[Sum[(-1)^(Floor[Sqrt[i]]), {i,0,n}], {n,0,50}] (* _G. C. Greubel_, Dec 22 2016 *)
%o (PARI) {a(n) = my(m); if( n<0, 0, m = sqrtint(n + 1); (-1)^m * (n + 1 - m - m^2))};
%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=2, n, (1 - x^k)^(k%2+1), 1 + x * O(x^n)), n))};
%o (Python)
%o from math import isqrt
%o def A255175(n): return ((1+(t:=isqrt(n)))*t-n-1)*(1 if t&1 else -1) # _Chai Wah Wu_, Aug 04 2022
%Y Cf. A053615, A134451, A196199, A329116 (essentially the same), A339265 (first differences).
%K sign
%O 0,4
%A _Michael Somos_, Feb 16 2015