Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Oct 12 2022 08:40:46
%S 1,4,17,72,304,1284,5424,22912,96784,408832,1726976,7295040,30815488,
%T 130169856,549859584,2322700288,9811480576,41445360640,175072243712,
%U 739534897152,3123921031168,13195973099520,55742031986688,235463812071424,994639140683776
%N Number of n-length words on {0,1,2,3,4} in which 0 appears only in runs of length 2.
%H Colin Barker, <a href="/A255117/b255117.txt">Table of n, a(n) for n = 0..1000</a>
%H D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html">On the Enumeration of Restricted Words over a Finite Alphabet</a>, J. Int. Seq. 19 (2016) # 16.1.3, example 10.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,4).
%F a(n+3) = 4*a(n+2) + 4*a(n) with n>1, a(0) = 1, a(1) = 4, a(2) = 17.
%F G.f.: -(x^2+1) / (4*x^3+4*x-1). - _Colin Barker_, Feb 15 2015
%F a(n) = A089979(n) + A089979(n-2). - _R. J. Mathar_, Aug 04 2019
%t RecurrenceTable[{a[0] == 1, a[1] == 4, a[2]== 17, a[n] == 4 a[n - 1] + 4 a[n - 3]}, a[n], {n, 0, 25}]
%o (PARI) Vec(-(x^2+1)/(4*x^3+4*x-1) + O(x^100)) \\ _Colin Barker_, Feb 15 2015
%Y Cf. A000930, A239333, A239340, A254657, A254600, A254664.
%K nonn,easy
%O 0,2
%A _Milan Janjic_, Feb 14 2015