login
Number of (n+2)X(7+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 0
1

%I #4 Feb 14 2015 10:47:44

%S 21442,22601,50587,169879,644545,2657415,10823026,41029852,147005440,

%T 528612584,2002360531,8000123444,32119332753,123670654575,

%U 456854111573,1674584723956,6302040144051,24608754488507,97189664600774

%N Number of (n+2)X(7+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 0

%C Column 7 of A255091

%H R. H. Hardin, <a href="/A255090/b255090.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +39*a(n-3) -81*a(n-4) +41*a(n-5) +1787*a(n-6) -1893*a(n-7) -1599*a(n-8) -69857*a(n-9) +74227*a(n-10) +64575*a(n-11) -177765*a(n-12) +111785*a(n-13) +38376*a(n-14) +4452253*a(n-15) -4503205*a(n-16) -1602444*a(n-17) +2050823*a(n-18) -410170*a(n-19) +1155804*a(n-20) -20284977*a(n-21) +19189815*a(n-22) -48665647*a(n-23) +44697455*a(n-24) +4172379*a(n-25) +12203637*a(n-26) +134116219*a(n-27) -146047049*a(n-28) -513438777*a(n-29) +488518407*a(n-30) +25565993*a(n-31) +48375060*a(n-32) +899419057*a(n-33) -948573769*a(n-34) -2033854692*a(n-35) +1996898892*a(n-36) +55400100*a(n-37) +755991648*a(n-38) -52195596*a(n-39) -720722532*a(n-40) -31773421008*a(n-41) +31652789328*a(n-42) +157485600*a(n-43) +1554235776*a(n-44) +1679941728*a(n-45) -3269153952*a(n-46) -65322210240*a(n-47) +65092662720*a(n-48) +294585984*a(n-49) +2754570240*a(n-50) +3607721856*a(n-51) -6431156352*a(n-52) -115760814336*a(n-53) +115760814336*a(n-54) for n>63

%e Some solutions for n=4

%e ..1..1..1..0..1..1..1..1..1....1..1..1..0..0..1..1..1..1

%e ..1..1..0..1..1..1..1..1..1....0..1..0..0..1..1..1..1..1

%e ..1..0..1..1..1..1..1..1..0....1..1..1..1..1..1..1..0..1

%e ..0..1..1..1..1..1..1..1..1....0..0..1..1..1..1..0..0..1

%e ..1..1..1..1..1..1..0..1..1....0..1..1..1..1..0..0..1..1

%e ..1..1..1..1..1..0..1..1..1....1..1..1..1..1..0..1..1..1

%Y Cf. A255091

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 14 2015