|
|
A255082
|
|
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with no 3x3 subblock diagonal sum one and no antidiagonal sum one
|
|
9
|
|
|
208, 676, 676, 2444, 2704, 2444, 8836, 14161, 14161, 8836, 31960, 66049, 103929, 66049, 31960, 115600, 309136, 630436, 630436, 309136, 115600, 418200, 1485961, 4055975, 4906225, 4055975, 1485961, 418200, 1512900, 7070281, 26388769
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
......208.......676........2444..........8836..........31960...........115600
......676......2704.......14161.........66049.........309136..........1485961
.....2444.....14161......103929........630436........4055975.........26388769
.....8836.....66049......630436.......4906225.......40081561........344028304
....31960....309136.....4055975......40081561......442721280.......5286889521
...115600...1485961....26388769.....344028304.....5286889521......87959696400
...418200...7070281...170527280....2916864064....60755627185....1389939607849
..1512900..33686416..1103236225...24655280400...697465500736...21978319114816
..5473500.161417025..7182663455..210761791744..8157711718900..355530634470400
.19802500.772006225.46658160025.1799944224400.95072386757049.5709705914259216
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..542
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 5*a(n-1) -25*a(n-3) +25*a(n-4) for n>5
|
|
EXAMPLE
|
Some solutions for n=3 k=4
..0..0..1..1..0..0....0..0..0..0..0..0....0..0..1..1..1..1....0..0..0..1..1..1
..0..1..1..1..1..0....0..1..1..1..1..1....0..1..1..1..0..0....1..1..1..1..0..1
..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....1..0..1..1..1..1
..1..1..1..1..1..0....1..0..1..1..1..0....0..1..1..1..1..0....1..1..1..1..1..0
..1..1..1..1..1..0....1..1..1..1..1..0....1..0..0..0..1..1....1..0..0..1..1..1
|
|
CROSSREFS
|
Sequence in context: A260365 A131686 A235273 * A255075 A304281 A234549
Adjacent sequences: A255079 A255080 A255081 * A255083 A255084 A255085
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Feb 14 2015
|
|
STATUS
|
approved
|
|
|
|