login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the diagonal and antidiagonal minus the sum of the medians of the central row and column nondecreasing horizontally and vertically
8

%I #4 Feb 11 2015 13:16:29

%S 512,2679,2679,10762,14320,10762,44548,70331,70331,44548,193488,

%T 369357,503440,369357,193488,827673,1939341,3575520,3575520,1939341,

%U 827673,3456356,10216539,24807024,32507240,24807024,10216539,3456356,14347670

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the diagonal and antidiagonal minus the sum of the medians of the central row and column nondecreasing horizontally and vertically

%C Table starts

%C ......512.......2679.......10762.........44548.........193488...........827673

%C .....2679......14320.......70331........369357........1939341.........10216539

%C ....10762......70331......503440.......3575520.......24807024........173958123

%C ....44548.....369357.....3575520......32507240......279655310.......2437254993

%C ...193488....1939341....24807024.....279655310.....2907772796......31738435946

%C ...827673...10216539...173958123....2437254993....31738435946.....446654943404

%C ..3456356...54357112..1221043730...21345394571...351447919966....6335613688670

%C .14347670..289904665..8537684121..185809115750..3833363797172...88118860757033

%C .59706588.1544994778.59658144024.1614349898421.41743093666360.1226510345770217

%H R. H. Hardin, <a href="/A254998/b254998.txt">Table of n, a(n) for n = 1..127</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 50] for n>54

%e Some solutions for n=2 k=4

%e ..0..0..0..0..1..1....0..0..1..1..0..0....0..0..0..1..0..0....0..0..0..1..0..1

%e ..0..0..0..0..0..1....0..0..0..0..1..1....1..0..0..1..0..0....0..0..0..0..0..0

%e ..0..0..0..1..0..0....0..0..0..1..1..0....1..0..0..0..1..0....1..0..0..0..1..0

%e ..0..1..1..1..1..1....1..0..1..0..0..1....1..0..0..0..1..0....0..1..0..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Feb 11 2015