login
A254959
Squares not divisible by 10 with digits d_1, d_2, ... d_k such that d_1^2 + ... + d_k^2 is a square.
1
1, 4, 9, 676, 841, 1444, 4225, 24025, 42025, 42436, 43264, 66049, 109561, 119716, 155236, 239121, 244036, 248004, 252004, 335241, 355216, 362404, 373321, 643204, 664225, 703921, 717409, 751689, 790321, 802816, 840889, 850084, 851929, 1110916, 1263376, 1292769, 1334025, 1361889, 1366561, 1371241, 1413721, 1522756, 1718721
OFFSET
1,2
COMMENTS
Any one of these terms can have an even number of 0's following the term. Thus, the numbers ending in 0 have been omitted.
LINKS
MATHEMATICA
Select[Range[1500]^2, Mod[#, 10]!=0&&IntegerQ[Sqrt[Total[ IntegerDigits[ #]^2]]]&] (* Harvey P. Dale, Apr 29 2019 *)
PROG
(PARI) for(n=0, 10^3, if(n%10, N=n^2; d=digits(N); s=0; for(i=1, #d, s+=d[i]^2); if(issquare(s), print1(N, ", "))))
CROSSREFS
Sequence in context: A063248 A027522 A330580 * A028869 A179935 A073172
KEYWORD
nonn,base
AUTHOR
Derek Orr, Feb 11 2015
STATUS
approved