%I #8 Mar 05 2015 14:19:41
%S 512,2485,8776,30182,99200,293012,794128,2084773,5392400,13573624,
%T 33204574,80124746,192349472,458091034,1080492808,2534264261,
%U 5930184322,13838765283,32185821994,74693933546,173167669926,401063439075
%N Number of (n+2)X(1+2) 0..1 arrays with every 3X3 subblock sum of the medians of the diagonal and antidiagonal minus the two sums of the central row and column nondecreasing horizontally and vertically
%C Column 1 of A254845
%H R. H. Hardin, <a href="/A254838/b254838.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) -3*a(n-2) -4*a(n-3) +19*a(n-4) -52*a(n-5) +16*a(n-6) +84*a(n-7) -81*a(n-8) +54*a(n-9) +241*a(n-10) -548*a(n-11) -247*a(n-12) +1186*a(n-13) -1497*a(n-14) +970*a(n-15) +2083*a(n-16) -4166*a(n-17) +1689*a(n-18) +1372*a(n-19) -2626*a(n-20) -634*a(n-21) +11103*a(n-22) -18990*a(n-23) +16085*a(n-24) -8600*a(n-25) +3843*a(n-26) -6236*a(n-27) +16348*a(n-28) -24736*a(n-29) +21996*a(n-30) -11504*a(n-31) +2384*a(n-32) +1920*a(n-33) -2496*a(n-34) +1280*a(n-35) -256*a(n-36) for n>41
%e Some solutions for n=4
%e ..0..1..0....0..0..1....1..0..0....0..1..0....0..0..1....1..1..0....1..0..0
%e ..1..1..0....1..0..0....1..1..1....1..1..0....0..1..0....1..0..0....1..1..0
%e ..0..1..0....0..1..0....0..1..1....0..1..1....1..1..0....0..1..1....0..1..0
%e ..0..0..0....0..0..0....0..0..1....1..0..0....1..0..1....0..0..0....0..0..1
%e ..0..0..1....0..0..0....1..0..0....1..0..1....0..0..1....0..1..1....1..0..0
%e ..1..0..1....1..0..0....1..1..0....1..0..1....0..0..1....0..0..1....0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 08 2015