login
Number of length n 1..(3+1) arrays with every leading partial sum divisible by 2, 3 or 5
1

%I #4 Feb 08 2015 10:25:08

%S 3,10,30,79,197,496,1262,3476,10400,30718,86549,244255,709450,2051001,

%T 5691742,15102696,39115080,102078824,275987219,775822274,2223250672,

%U 6380375677,18280341752,52328438849,148625082422,414077248266

%N Number of length n 1..(3+1) arrays with every leading partial sum divisible by 2, 3 or 5

%C Column 3 of A254827

%H R. H. Hardin, <a href="/A254822/b254822.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 24*a(n-8) +632*a(n-9) +5234*a(n-10) +21008*a(n-11) +50183*a(n-12) +79287*a(n-13) +87918*a(n-14) +70786*a(n-15) +42120*a(n-16) +18620*a(n-17) +6082*a(n-18) +1447*a(n-19) +246*a(n-20) +29*a(n-21) +2*a(n-22)

%e Some solutions for n=4

%e ..4....3....2....3....2....2....2....3....2....2....2....3....3....2....2....4

%e ..1....3....4....2....3....3....1....2....4....1....2....3....3....2....2....4

%e ..4....4....3....1....4....1....2....1....2....1....2....4....2....4....1....4

%e ..3....4....1....2....1....4....1....3....4....2....2....2....4....1....3....3

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 08 2015