

A254713


All numbers k such that the number of distinct parts of all A045917(k) Goldbach partitions of 2k is prime.


1



4, 5, 6, 7, 11, 13, 17, 19, 23, 29, 31, 53, 59, 61, 67, 73, 83, 89, 97, 101, 103, 109, 113, 127, 131, 139, 151, 157, 163, 173, 179, 191, 193, 199, 223, 227, 229, 251, 263, 271, 307, 313, 337, 347, 353, 359, 367, 379, 389, 401, 449, 479, 521, 523, 577, 587, 599, 601, 607, 613, 631, 643
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Conjecture: a(k) is prime for k > 3. Tested for k up to 3*10^4.


LINKS



EXAMPLE

For k = 4, 2k = 8. The number of the distinct Goldbach parts of 8 (3 and 5) is prime, therefore 4 is in the sequence.
5 is in the sequence because the 2 = A045917(5) Goldbach partitions of 10 are 5 + 5 and 3 + 7, and there are 3 distinct parts, namely 3, 5 and 7.  Wolfdieter Lang, Feb 23 2015


MATHEMATICA

lstIn={}; lstFin={};
goldPart[x_]:=Module[{h=x/2}, While[h>1, If[And[PrimeQ[h], PrimeQ[xh]], AppendTo[lstIn, {h, xh}]]; h];
lstFin=Length[Union[Flatten[lstIn]]]; lstIn={}; lstFin];
a254713=Flatten[Position[PrimeQ[goldPart/@Range[2, 2002, 2]], True]]


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



EXTENSIONS



STATUS

approved



