Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Sep 08 2022 08:46:11
%S 1,1,2,4,7,12,22,39,69,123,219,389,692,1231,2189,3893,6924,12314,
%T 21900,38949,69270,123195,219100,389665,693011,1232506,2191987,
%U 3898404,6933232,12330612,21929742,39001599,69363549,123361658,219396194,390191659,693947912
%N Number of partially ordered partitions of n into parts less than or equal to 3, in which the order of adjacent 2's and 3's is unimportant.
%C Also number of compositions of n into parts 1, 2, 3, and 5.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,1,0,-1).
%F G.f.: 1/(x^5 - x^3 - x^2 - x + 1).
%F a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-5).
%e a(7)=39. These are (331),(313),(133),(322=232=223),(3211=2311),(1123=1132),(1231=1321),(3112),(2113),(1312),(1213),(3121),(2131),(31111),(13111),(11311),(11131),(11113),(2221),(2212),(2122),(1222),(22111),(21211),(12211),(12121),(11221),(11212),(11122),(12112),(21112),(21121),(211111),(121111),(112111),(111211),(111121),(111112),(1111111).
%t CoefficientList[Series[1/(x^5 - x^3 - x^2 - x + 1), {x, 0, 40}], x] (* _Vincenzo Librandi_, May 06 2015 *)
%o (Magma) I:=[1,2,4,7,12]; [n le 5 select I[n] else Self(n-1)+Self(n-2)+Self(n-3)-Self(n-5): n in [1..40]]; // _Vincenzo Librandi_, May 06 2015
%Y Cf. A001399.
%K nonn,easy
%O 0,3
%A _David Neil McGrath_, May 04 2015
%E Corrected g.f. and more terms from _Vincenzo Librandi_, May 06 2015
%E a(0) added and g.f. adapted from _Alois P. Heinz_, May 08 2015