login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and the central column and the two maximums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Feb 01 2015 19:25:34

%S 2868,17125,96756,545360,3083065,17163021,94299759,513689395,

%T 2784287954,15033788426,81007656094,435782949444,2342282105203,

%U 12580176218027,67541357805877,362492523075197,1945139209520412,10435768594838260

%N Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and the central column and the two maximums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Row 2 of A254586

%H R. H. Hardin, <a href="/A254587/b254587.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 12*a(n-1) -31*a(n-2) -138*a(n-3) +828*a(n-4) -1152*a(n-5) -516*a(n-6) +3120*a(n-7) -10242*a(n-8) +25971*a(n-9) -21553*a(n-10) -23255*a(n-11) +86873*a(n-12) -181029*a(n-13) +223910*a(n-14) -48622*a(n-15) -281148*a(n-16) +598492*a(n-17) -720262*a(n-18) +410453*a(n-19) +361755*a(n-20) -1153683*a(n-21) +1271501*a(n-22) -724554*a(n-23) -350616*a(n-24) +1664393*a(n-25) -1946703*a(n-26) +936016*a(n-27) +714120*a(n-28) -2211288*a(n-29) +2343444*a(n-30) -862717*a(n-31) -1272388*a(n-32) +2269089*a(n-33) -1454731*a(n-34) -85196*a(n-35) +1313620*a(n-36) -1290256*a(n-37) +181169*a(n-38) +689073*a(n-39) -724485*a(n-40) +253943*a(n-41) +182620*a(n-42) -309028*a(n-43) +159124*a(n-44) +26532*a(n-45) -58848*a(n-46) +14848*a(n-47) +2560*a(n-48) -1024*a(n-49) for n>55

%e Some solutions for n=3

%e ..0..0..0..1..0....1..1..0..0..1....1..0..0..1..1....1..1..0..0..1

%e ..0..0..1..0..1....0..0..0..1..0....1..0..0..1..0....1..1..1..1..1

%e ..1..0..0..1..0....0..1..1..1..1....1..0..1..1..0....0..1..1..1..0

%e ..1..1..1..0..0....0..1..1..0..1....1..1..0..1..1....1..1..0..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 01 2015