login
A254586
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and the central column and the two maximums of the diagonal and antidiagonal nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
512, 2868, 2868, 15051, 17125, 15051, 72939, 96756, 110259, 72939, 332330, 545360, 774168, 649029, 332330, 1451174, 3083065, 5909527, 5852880, 3699505, 1451174, 6117882, 17163021, 45867931, 58920922, 42278366, 20636376, 6117882, 25078442
OFFSET
1,1
COMMENTS
Table starts
......512......2868.......15051........72939.........332330.........1451174
.....2868.....17125.......96756.......545360........3083065........17163021
....15051....110259......774168......5909527.......45867931.......350562134
....72939....649029.....5852880.....58920922......613720640......6258245316
...332330...3699505....42278366....548753241.....7610621332....103508337281
..1451174..20636376...305579066...5184793937....96984109170...1782085332862
..6117882.113625185..2204567802..49094787979..1242236438386..30739517451493
.25078442.620711336.15863354126.464109388554.15846867693636.527044893827218
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 26] for n>27
k=2: [order 25] for n>30
k=3: [order 18] for n>25
k=4: [order 25] for n>32
k=5: [order 38] for n>46
k=6: [order 63] for n>72
Empirical for row n:
n=1: [same linear recurrence of order 26] for n>27
n=2: [order 49] for n>55
n=3: [order 66] for n>81
EXAMPLE
Some solutions for n=2 k=4
..1..1..0..1..0..1....1..0..1..0..1..0....0..0..0..1..0..1....0..0..1..0..0..1
..0..0..1..1..1..1....0..0..0..0..0..1....0..1..0..0..0..1....0..0..0..0..1..1
..0..1..0..1..1..1....0..1..0..1..1..1....1..0..0..1..1..0....0..0..0..1..1..1
..1..1..1..1..1..0....0..1..0..1..1..0....0..1..1..1..1..0....0..0..1..1..0..0
CROSSREFS
Column 1 and row 1 are A254354
Sequence in context: A257154 A254743 A254736 * A254361 A254354 A254189
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 01 2015
STATUS
approved