login
Number of (n+2)X(4+2) 0..1 arrays with every 3X3 subblock sum of the four sums of the central row, central column, diagonal and antidiagonal nondecreasing horizontally and vertically
1

%I #4 Feb 01 2015 10:43:47

%S 37200,183210,978154,2148260,4796417,12136355,25618602,56219231,

%T 118029035,245830679,490847254,974839744,1887834479,3581112558,

%U 6699292579,12319163671,22287681131,39795975182,70067976674,121758652567

%N Number of (n+2)X(4+2) 0..1 arrays with every 3X3 subblock sum of the four sums of the central row, central column, diagonal and antidiagonal nondecreasing horizontally and vertically

%C Column 4 of A254568

%H R. H. Hardin, <a href="/A254564/b254564.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A254564/a254564.txt">polynomial of degree 22 plus a quasipolynomial of degree 12 with period 6</a>

%F Empirical: a(n) = 9*a(n-1) -35*a(n-2) +88*a(n-3) -207*a(n-4) +497*a(n-5) -1011*a(n-6) +1782*a(n-7) -3201*a(n-8) +5555*a(n-9) -8415*a(n-10) +12310*a(n-11) -18434*a(n-12) +25038*a(n-13) -31174*a(n-14) +40170*a(n-15) -49491*a(n-16) +53547*a(n-17) -58201*a(n-18) +64350*a(n-19) -60203*a(n-20) +51337*a(n-21) -47619*a(n-22) +34892*a(n-23) -12870*a(n-24) +12870*a(n-26) -34892*a(n-27) +47619*a(n-28) -51337*a(n-29) +60203*a(n-30) -64350*a(n-31) +58201*a(n-32) -53547*a(n-33) +49491*a(n-34) -40170*a(n-35) +31174*a(n-36) -25038*a(n-37) +18434*a(n-38) -12310*a(n-39) +8415*a(n-40) -5555*a(n-41) +3201*a(n-42) -1782*a(n-43) +1011*a(n-44) -497*a(n-45) +207*a(n-46) -88*a(n-47) +35*a(n-48) -9*a(n-49) +a(n-50) for n>62

%F polynomial of degree 22 plus a quasipolynomial of degree 12 with period 6 for n>12 (see link above)

%e Some solutions for n=2

%e ..0..0..1..0..1..1....0..0..0..1..0..1....0..0..1..0..1..0....0..1..0..0..1..1

%e ..0..0..1..1..1..1....0..0..0..1..1..0....0..0..0..0..1..0....0..0..0..1..1..1

%e ..1..0..1..1..1..1....0..1..1..1..1..0....0..0..0..0..1..0....1..1..1..1..1..1

%e ..1..1..0..1..1..1....1..1..0..1..1..1....1..0..1..1..1..0....1..1..1..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Feb 01 2015