login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of length n 1..(k+2) arrays with no leading partial sum equal to a prime
14

%I #4 Feb 01 2015 09:40:58

%S 1,2,1,2,3,1,3,5,8,2,3,10,15,20,4,4,11,40,45,50,6,5,20,49,160,135,126,

%T 11,6,28,105,222,670,421,329,20,6,37,163,576,1087,3001,1466,956,33,7,

%U 41,253,1026,3383,5604,13503,5403,2897,62,7,54,307,1849,6814,20393,29038,60408

%N T(n,k)=Number of length n 1..(k+2) arrays with no leading partial sum equal to a prime

%C Table starts

%C ..1....2.....2.......3.......3........4........5.........6.........6..........7

%C ..1....3.....5......10......11.......20.......28........37........41.........54

%C ..1....8....15......40......49......105......163.......253.......307........466

%C ..2...20....45.....160.....222......576.....1026......1849......2461.......4195

%C ..4...50...135.....670....1087.....3383.....6814.....13843.....20012......37643

%C ..6..126...421....3001....5604....20393....45472....102595....161277.....338402

%C .11..329..1466...13503...29038...121774...297210....758766...1313695....3093457

%C .20..956..5403...60408..150268...709169..1936867...5719495..10916298...28507728

%C .33.2897.19417..270370..764508..4121638.12941917..43758333..91142820..262001403

%C .62.8341.69205.1192385.3857845.24622476.88456127.333905794.755234611.2410105286

%H R. H. Hardin, <a href="/A254539/b254539.txt">Table of n, a(n) for n = 1..9999</a>

%e Some solutions for n=4 k=4

%e ..4....4....6....6....6....4....4....6....1....4....6....1....4....1....6....6

%e ..4....6....6....3....2....6....2....6....5....5....6....5....6....3....3....2

%e ..1....5....4....5....1....2....2....2....2....1....2....6....6....5....1....4

%e ..1....5....4....2....6....2....1....1....1....2....2....6....4....3....5....4

%Y Row 1 is A062298(n+2)

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Feb 01 2015