login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of tilings of a 6 X n rectangle using polyominoes of shape I.
2

%I #11 Dec 24 2019 08:32:26

%S 1,32,2293,217969,22734496,2441987149,264719566561,28778500622048,

%T 3131382012183077,340819280011906449,37097936406550231392,

%U 4038192819517826461181,439569960022854881087873,47848695174956866013911072,5208498569279829885262307157

%N Number of tilings of a 6 X n rectangle using polyominoes of shape I.

%C A polyomino of shape I is a rectangle of width 1.

%H Andrew Howroyd, <a href="/A254458/b254458.txt">Table of n, a(n) for n = 0..200</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polyomino">Polyomino</a>

%F G.f.: (1 - 153*x + 6777*x^2 - 132415*x^3 + 1336362*x^4 - 7606262*x^5 + 25527903*x^6 - 51325185*x^7 + 61507605*x^8 - 42648785*x^9 + 16029360*x^10 - 2890728*x^11 + 181440*x^12)/(1 - 185*x + 10404*x^2 - 259107*x^3 + 3361183*x^4 - 24886632*x^5 + 110360811*x^6 - 299572675*x^7 + 499926324*x^8 - 508443601*x^9 + 305734685*x^10 - 101727600*x^11 + 16409736*x^12 - 907200*x^13). - _Andrew Howroyd_, Dec 23 2019

%Y Column k=6 of A254414.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jan 30 2015