Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Jan 30 2015 10:36:49
%S 81,470,470,2180,3279,2180,9623,25589,26783,9623,42669,229652,423141,
%T 238639,42669,192393,2128339,6880359,6683795,2182689,192393,876277,
%U 19879926,109896298,199339608,106821947,20251190,876277,4010555
%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock diagonal maximum minus antidiagonal maximum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
%C Table starts
%C .....81.......470........2180..........9623...........42669.............192393
%C ....470......3279.......25589........229652.........2128339...........19879926
%C ...2180.....26783......423141.......6880359.......109896298.........1753478415
%C ...9623....238639.....6683795.....199339608......5865501284.......176249310185
%C ..42669...2182689...106821947....5909079229....310310891535.....16806656467840
%C .192393..20251190..1701224592..176730239629..16692762023274...1673449182032706
%C .876277.189197280.27127649888.5319044439319.894001153490556.164418838931876650
%H R. H. Hardin, <a href="/A254422/b254422.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 6] for n>13
%F k=2: [order 11] for n>17
%F k=3: [order 25] for n>30
%F k=4: [order 60] for n>66
%F Empirical for row n:
%F n=1: [same recurrence of order 6] for n>13
%F n=2: [same order 11] for n>18
%F n=3: [same order 25] for n>32
%F n=4: [order 59] for n>67
%e Some solutions for n=2 k=4
%e ..0..1..2..0..1....1..1..0..2..0....0..1..1..1..0....1..0..2..0..1
%e ..2..0..2..2..2....0..1..1..2..1....2..2..2..2..2....2..1..2..1..1
%e ..2..0..2..1..2....1..1..1..2..1....2..2..1..0..2....2..1..2..1..1
%Y Column 1 and row 1 are A253517
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 30 2015