Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:46:11
%S 0,7,32,86,180,325,532,812,1176,1635,2200,2882,3692,4641,5740,7000,
%T 8432,10047,11856,13870,16100,18557,21252,24196,27400,30875,34632,
%U 38682,43036,47705,52700,58032,63712,69751,76160,82950,90132,97717,105716,114140,123000
%N a(n) = n*(n+1)*(11*n +10)/6.
%C Similar sequences of the type m*P(s,m) - Sum_{i=1..m} P(s-1,i), where P(s,m) is the m-th s-gonal number:
%C s=3: A027480(n) = (n+1)*A000217(n+1) - Sum_{i=1..n+1} i;
%C s=4: A162148(n) = (n+1)*A000290(n+1) - Sum_{i=1..n+1} A000217(i);
%C s=5: A245301(n) = (n+1)*A000326(n+1) - Sum_{i=1..n+1} A000290(i);
%C s=6: A085788(n) = (n+1)*A000384(n+1) - Sum_{i=1..n+1} A000326(i);
%C s=7: a(n) = (n+1)*A000566(n+1) - Sum_{i=1..n+1} A000384(i).
%H Vincenzo Librandi, <a href="/A254407/b254407.txt">Table of n, a(n) for n = 0..1000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Polygonal_number#Table_of_values">Polygonal numbers: Table of values</a>.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F G.f.: x*(7 + 4*x)/(1 - x)^4.
%F a(-n) = -A132112(n-1).
%F a(n) = Sum_{k=0..n} A011875(11*k+2).
%F Equivalently, partial sums of A254963.
%F E.g.f.: x*(42 + 54*x + 11*x^2)*exp(x)/6. - _G. C. Greubel_, Mar 31 2021
%e 532 is the 7th term because A000566(7)=112 and Sum_{i=1..7} A000384(i)=252, therefore 7*112-252 = 532.
%p A254407:= n-> n*(n+1)*(11*n+10)/6; seq(A254407(n), n=0..50); # _G. C. Greubel_, Mar 31 2021
%t Table[n (n + 1) (11 n + 10)/6, {n, 0, 40}]
%t Column[CoefficientList[Series[x (7 + 4 x) / (1 - x)^4, {x, 0, 60}], x]] (* _Vincenzo Librandi_, Jan 31 2015 *)
%o (PARI) vector(40, n, n--; n*(n+1)*(11*n+10)/6)
%o (Sage) [n*(n+1)*(11*n+10)/6 for n in (0..40)]
%o (Magma) [n*(n+1)*(11*n+10)/6: n in [0..40]];
%o (Maxima) makelist(n*(n+1)*(11*n+10)/6, n, 0, 40);
%Y Cf. A011875, A027480, A057145, A085788, A132112, A162148, A245301, A254963.
%K nonn,easy
%O 0,2
%A _Bruno Berselli_, Jan 30 2015