%I #28 Feb 17 2019 20:47:07
%S 1,2,3,4,5,8,12,16
%N Numbers k such that all x^2 mod k are squares (including 0 and 1).
%C Are there any more terms > 16?
%C There are no more terms less than 10^12. Probably the sequence is finite. - _Charles R Greathouse IV_, Jan 29 2015
%C This is a subsequence of A303704, so it is full. - _Jianing Song_, Feb 14 2019
%e Terms k <= 16 and the squares mod k:
%e 1: [0]
%e 2: [0, 1]
%e 3: [0, 1, 1]
%e 4: [0, 1, 0, 1]
%e 5: [0, 1, 4, 4, 1]
%e 8: [0, 1, 4, 1, 0, 1, 4, 1]
%e 12: [0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1]
%e 16: [0, 1, 4, 9, 0, 9, 4, 1, 0, 1, 4, 9, 0, 9, 4, 1]
%e k = 10 is not a term: in the list of squares mod 10, [0, 1, 4, 9, 6, 5, 6, 9, 4, 1], the numbers 5 and 6 are not squares.
%t f[n_] := Mod[Range[n]^2, n]; Select[Range@ 10000, AllTrue[f@ #, IntegerQ[Sqrt[#]] &] &] (* AllTrue function introduced in version 10; _Michael De Vlieger_, Jan 29 2015 *)
%o (PARI) isok(n)=for(k=2,n-1,if(!issquare(lift(Mod(k,n)^2)),return(0)));return(1);
%o for(n=1,10^9,if(isok(n),print1(n,", ")));
%o (PARI) is(n)=for(k=sqrtint(n)+1,n\2, if(!issquare(k^2%n), return(0))); 1
%o for(m=10,10^6,for(k=0,sqrtint(2*m),if(is(t=m^2-k^2),print(t))))
%o \\ _Charles R Greathouse IV_, Jan 29 2015
%Y Cf. A065428, A254329, A096008, A303704.
%K nonn,fini,full
%O 1,2
%A _Joerg Arndt_, Jan 28 2015
%E Keywords fini and full added by _Jianing Song_, Feb 14 2019