login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of tribonacci numbers A000073(2) * ... * A000073(n).
3

%I #21 Sep 22 2024 17:45:46

%S 1,1,2,8,56,728,17472,768768,62270208,9278260992,2542243511808,

%T 1281290729951232,1187756506664792064,2025124843863470469120,

%U 6350791510355843391160320,36631365431732504680212725760,388622155865250142152376807587840

%N Product of tribonacci numbers A000073(2) * ... * A000073(n).

%H Chai Wah Wu, <a href="/A254231/b254231.txt">Table of n, a(n) for n = 2..89</a>

%F a(n) ~ c * d^(n/2) * r^(n^2/2), where r = A058265 = 1.839286755214161132551852564653286600424178746097592246778758639404203222... is the root of the equation r^3 - r^2 - r - 1 = 0, d = 0.061463687669952618841340986526101395138659648898940720192319213600612851... is the root of the equation -1 + 36*d - 440*d^2 + 1936*d^3 = 0, c = 4.156714772910304733054135311449211887936035199917470476143821433373978333... .

%t Table[Product[SeriesCoefficient[x^2/(1-x-x^2-x^3),{x,0,k}],{k,2,n}], {n,2,20}]

%o (Python)

%o A254231_list, a, b, c, d = [1], 0, 0, 1, 1

%o for _ in range(15):

%o a, b, c = b, c, a+b+c

%o d *= c

%o A254231_list.append(d) # _Chai Wah Wu_, Jan 27 2015

%Y Cf. A000073, A003266, A058265, A126772, A135407, A254232.

%K nonn

%O 2,3

%A _Vaclav Kotesovec_, Jan 27 2015