login
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally
15

%I #4 Jan 26 2015 12:57:09

%S 512,3036,3036,16240,23660,16240,76832,164408,164684,76832,348032,

%T 1078032,1553720,1014816,348032,1511152,6831024,15016048,13514192,

%U 6159516,1511152,6440848,41678024,139009432,191190272,119471400,36538548

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Table starts

%C .......512........3036.........16240...........76832.............348032

%C ......3036.......23660........164408.........1078032............6831024

%C .....16240......164684.......1553720........15016048..........139009432

%C .....76832.....1014816......13514192.......191190272.........2589374656

%C ....348032.....6159516.....119471400......2437141776........47722312832

%C ...1511152....36538548....1054310240.....31143715804.......886761490936

%C ...6440848...217539476....9378850720....399587109728.....16524431408400

%C ..27128324..1297596948...83642043104...5135066242396....307997125181376

%C .113712184..7773465716..747838723984..66055387860800...5746900683155904

%C .475820928.46667868056.6692350328688.850097997207468.107280164731745488

%H R. H. Hardin, <a href="/A254168/b254168.txt">Table of n, a(n) for n = 1..335</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 32]

%F k=2: [order 45] for n>53

%F k=3: [order 66] for n>71

%F Empirical for row n:

%F n=1: [same linear recurrence of order 32]

%F n=2: [order 47] for n>61

%F n=3: [order 73] for n>90

%e Some solutions for n=2 k=4

%e ..0..1..0..0..1..0....0..0..1..0..1..0....0..1..1..1..1..0....0..1..0..1..1..1

%e ..1..0..1..1..1..0....1..0..0..1..1..0....1..0..0..1..1..0....1..0..1..0..1..0

%e ..0..1..0..0..0..1....0..1..0..0..0..0....1..1..0..1..1..0....1..1..0..0..0..0

%e ..1..0..0..1..1..0....1..1..0..1..1..0....1..1..1..1..1..1....1..1..1..0..1..0

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 26 2015