Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Sep 26 2023 10:59:02
%S 1,7957,1185037,10596309577,1578130224697,14111253811878301,
%T 2101618114050816901,18792154258821103289617,
%U 2798754265133491448134897,25025774916617575492416996517,3727140237435880812247465267837,33327174817289665775049786996211801
%N Pentagonal numbers (A000326) which are also centered hexagonal numbers (A003215).
%H Colin Barker, <a href="/A254138/b254138.txt">Table of n, a(n) for n = 1..327</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1331714,-1331714,-1,1).
%F a(n) = a(n-1)+1331714*a(n-2)-1331714*a(n-3)-a(n-4)+a(n-5).
%F G.f.: -x*(x^4+7956*x^3-154634*x^2+7956*x+1) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).
%e 7957 is in the sequence because it is the 73rd pentagonal number and the 52nd centered hexagonal number.
%t LinearRecurrence[{1,1331714,-1331714,-1,1},{1,7957,1185037,10596309577,1578130224697},20] (* _Harvey P. Dale_, Sep 26 2023 *)
%o (PARI) Vec(-x*(x^4+7956*x^3-154634*x^2+7956*x+1)/((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)) + O(x^100))
%Y Cf. A000326, A003215, A254136, A254137.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Jan 26 2015