OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 3*x^2 - 6*y^2 - x + 6*y - 2 = 0, the corresponding values of y being A254137.
LINKS
Colin Barker, Table of n, a(n) for n = 1..653
Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
FORMULA
a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+72*x^3-338*x^2+72*x+1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
EXAMPLE
73 is in the sequence because the 73rd pentagonal number is 7957, which is also the 52nd centered hexagonal number.
MATHEMATICA
LinearRecurrence[{1, 1154, -1154, -1, 1}, {1, 73, 889, 84049, 1025713}, 20] (* Harvey P. Dale, Mar 24 2024 *)
PROG
(PARI) Vec(-x*(x^4+72*x^3-338*x^2+72*x+1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 26 2015
STATUS
approved