Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Nov 05 2015 14:31:32
%S 0,1,-1,2,2,-2,41,13,3,-3,30,90,24,4,-4,501,209,139,35,5,-5,322,1102,
%T 388,188,46,6,-6,5041,2253,1703,567,237,57,7,-7,3110,11090,4184,2304,
%U 746,286,68,8,-8,47501,21769,17139,6115,2905,925,335,79,9,-9
%N Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = A254067(n,k) - A257499(n,k), n,k >= 1.
%F A(n,k) = (1 + (3^n - 2^(n + 1))*(6*k - 3 + 2*(-1)^n))/6, n,k >= 1.
%e A begins:
%e . 0 -1 -2 -3 -4 -5 -6 -7 -8 -9
%e . 1 2 3 4 5 6 7 8 9 10
%e . 2 13 24 35 46 57 68 79 90 101
%e . 41 90 139 188 237 286 335 384 433 482
%e . 30 209 388 567 746 925 1104 1283 1462 1641
%e . 501 1102 1703 2304 2905 3506 4107 4708 5309 5910
%e . 322 2253 4184 6115 8046 9977 11908 13839 15770 17701
%e . 5041 11090 17139 23188 29237 35286 41335 47384 53433 59482
%e . 3110 21769 40428 59087 77746 96405 115064 133723 152382 171041
%e . 47501 104502 161503 218504 275505 332506 389507 446508 503509 560510
%t (* Array: *)
%t A254131[n_, k_] := (1 + (3^n - 2^(n + 1))*(6*k - 3 + 2*(-1)^n))/6; Grid[Table[A254131[n, k], {n, 10}, {k, 10}]]
%t (* Array antidiagonals flattened: *)
%t Flatten[Table[(1 + (3^(n - k + 1) - 2^(n - k + 2))*(6*k - 3 + 2*(-1)^(n - k + 1)))/6, {n, 10}, {k, n}]]
%K sign,tabl
%O 1,4
%A _L. Edson Jeffery_, May 03 2015