Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 08 2022 08:46:11
%S 1,6,15,37,87,397,435,639,1086,2574,8997,10986,26994,101918,161406,
%T 207321,793170,834657,890827,1976355,3224625,7591023,8999997,9970098,
%U 11052598,17930619,18368601,21739023,38014197,89999997,109999986,116141652,177765554,201264120
%N Numbers that divide the sum of the reverse of their divisors (A069192).
%H Lars Blomberg, <a href="/A254008/b254008.txt">Table of n, a(n) for n = 1..41</a>
%e Divisors of 8997 are 1, 3, 2999, 8997 and the sum of their reverse is 1 + 3 + 9992 + 7998 = 17994. Finally, 17994 / 8997 = 2.
%p with(numtheory):
%p T:=proc(w) local x,y,z; x:=w; y:=0;
%p for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10); od; y; end:
%p P:=proc(q) local a,b,k; global n;
%p for n from 1 to q do a:=sort([op(divisors(n))]); b:=add(T(a[k]),k=1..nops(a));
%p if type(b/n,integer) then print(n); fi; od; end: P(10^9);
%o (Magma) [n: n in [1..10^6] | &+[Seqint(Reverse(Intseq(d))): d in Divisors(n)] mod n eq 0]; // _Bruno Berselli_, Jan 22 2015
%Y Cf. A069192, A254009.
%K nonn,base
%O 1,2
%A _Paolo P. Lava_, Jan 22 2015
%E a(19)-a(33) from _Lars Blomberg_, Feb 27 2015