OFFSET
1,10
COMMENTS
Let p_1, p_2, ..., p_m be the distinct primes dividing n. If (p_1/(p_1 - 1))*(p_2/(p_2 - 1))*...*(p_m/(p_m - 1)) > 2, then sufficiently high powers of n are abundant. Otherwise all powers of n are deficient, and we set a(n)=0.
The sequence is unbounded. In particular, for each N, we have a(A063765(N)) = N.
LINKS
Jeppe Stig Nielsen, Table of n, a(n) for n = 1..10000
EXAMPLE
PROG
(PARI) a(n) = {
primeVect = factor(n)[, 1];
if(prod(i=1, #primeVect, 1-1/primeVect[i])>=1/2, return(0));
for(k=1, 10^99, t=n^k; if(sigma(t)>=2*t, return(k))); }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jeppe Stig Nielsen, Jan 22 2015
STATUS
approved