login
A254001
a(n) is the least natural number k such that n^k is abundant or perfect, or a(n) is 0 if all n^k are deficient numbers.
1
0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 1, 0, 0, 0, 4, 0, 1, 0, 4, 0, 1, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 4, 0, 1, 0, 4, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 5, 0, 2, 0, 1, 0, 1, 0, 5, 0, 1, 0, 5, 0, 1, 0, 1, 0, 2, 0, 5, 0, 1, 0, 2, 0, 1
OFFSET
1,10
COMMENTS
Let p_1, p_2, ..., p_m be the distinct primes dividing n. If (p_1/(p_1 - 1))*(p_2/(p_2 - 1))*...*(p_m/(p_m - 1)) > 2, then sufficiently high powers of n are abundant. Otherwise all powers of n are deficient, and we set a(n)=0.
The sequence is unbounded. In particular, for each N, we have a(A063765(N)) = N.
LINKS
EXAMPLE
a(38)=4 because 38^4 is abundant (A023196) while 38^3, 38^2, and 38 are all deficient (A005100).
PROG
(PARI) a(n) = {
primeVect = factor(n)[, 1];
if(prod(i=1, #primeVect, 1-1/primeVect[i])>=1/2, return(0));
for(k=1, 10^99, t=n^k; if(sigma(t)>=2*t, return(k))); }
CROSSREFS
Sequence in context: A108069 A227837 A263099 * A089734 A321375 A352555
KEYWORD
nonn,easy
AUTHOR
Jeppe Stig Nielsen, Jan 22 2015
STATUS
approved