login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253974 Number of 2n-move closed giraffe paths on an unbounded chessboard from a given square to the same square. 6
1, 8, 168, 5120, 190120, 7964208, 362370624, 17532536736, 889716433320, 46887220540160, 2546408317827088, 141659449976239104, 8033749056463329472, 462687411167492828000, 26980019699392099317600, 1589091557661690119997120, 94361786346423775855372200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Giraffe is a (fairy chess) leaper [1,4].

Conjecture: Number of 2n-move closed paths of leaper [r,s] on an unbounded chessboard, where 0 < r < s and gcd(r,s)=1, is asymptotic to 2^(6*n+1) / ((r^2+s^2)*Pi*n) if r+s is even, and 2^(6*n) / ((r^2+s^2)*Pi*n) if r+s is odd.

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..552

Vaclav Kotesovec, Conjectured recurrence (of order 8)

Vaclav Kotesovec, Examples of closed giraffe paths

Wikipedia, Fairy chess piece

FORMULA

a(n) ~ 64^n / (17*Pi*n).

a(n) = the constant term in the expansion of (x*y^4 + x^4*y + 1/x*y^4 + 1/x^4*y + x/y^4 + x^4/y + 1/x/y^4 + 1/x^4/y)^(2*n). - Vaclav Kotesovec, Apr 01 2019

MAPLE

b:= proc(n, x, y) option remember; `if`(max(x, y)>4*n or x+y>5*n, 0,

      `if`(n=0, 1, add(b(n-1, abs(x+l[1]), abs(y+l[2])), l=[[4, 1],

      [1, 4], [-4, 1], [-1, 4], [4, -1], [1, -4], [-4, -1], [-1, -4]])))

    end:

a:= n-> b(2*n, 0$2):

seq(a(n), n=0..25); # after Alois P. Heinz

# second Maple program:

poly:=expand((x*y^4+x^4*y+y^4/x+y/x^4+x/y^4+x^4/y+1/(x*y^4)+1/(x^4*y))^2): z:=1: for n to 100 do z:=expand(z*poly): print(n, coeff(coeff(z, x, 0), y, 0)); end do: # Vaclav Kotesovec, Apr 03 2019

MATHEMATICA

b[n_, x_, y_] := b[n, x, y] = If[Max[x, y] > 4n || x + y > 5n, 0, If[n == 0, 1, Sum[b[n - 1, Abs[x + l[[1]]], Abs[y + l[[2]]]], {l, {{4, 1}, {1, 4}, {-4, 1}, {-1, 4}, {4, -1}, {1, -4}, {-4, -1}, {-1, -4}}}]]];

a[n_] := b[2n, 0, 0];

a /@ Range[0, 25] (* Jean-François Alcover, Nov 01 2020, after Maple *)

CROSSREFS

Cf. A094061, A254129, A254459, A307347.

Sequence in context: A221022 A039699 A307347 * A254459 A254129 A334780

Adjacent sequences:  A253971 A253972 A253973 * A253975 A253976 A253977

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Jan 31 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 15:06 EST 2021. Contains 349557 sequences. (Running on oeis4.)