login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253974
Number of 2n-move closed giraffe paths on an unbounded chessboard from a given square to the same square.
6
1, 8, 168, 5120, 190120, 7964208, 362370624, 17532536736, 889716433320, 46887220540160, 2546408317827088, 141659449976239104, 8033749056463329472, 462687411167492828000, 26980019699392099317600, 1589091557661690119997120, 94361786346423775855372200
OFFSET
0,2
COMMENTS
Giraffe is a (fairy chess) leaper [1,4].
Conjecture: Number of 2n-move closed paths of leaper [r,s] on an unbounded chessboard, where 0 < r < s and gcd(r,s)=1, is asymptotic to 2^(6*n+1) / ((r^2+s^2)*Pi*n) if r+s is even, and 2^(6*n) / ((r^2+s^2)*Pi*n) if r+s is odd.
FORMULA
a(n) ~ 64^n / (17*Pi*n).
a(n) = the constant term in the expansion of (x*y^4 + x^4*y + 1/x*y^4 + 1/x^4*y + x/y^4 + x^4/y + 1/x/y^4 + 1/x^4/y)^(2*n). - Vaclav Kotesovec, Apr 01 2019
MAPLE
b:= proc(n, x, y) option remember; `if`(max(x, y)>4*n or x+y>5*n, 0,
`if`(n=0, 1, add(b(n-1, abs(x+l[1]), abs(y+l[2])), l=[[4, 1],
[1, 4], [-4, 1], [-1, 4], [4, -1], [1, -4], [-4, -1], [-1, -4]])))
end:
a:= n-> b(2*n, 0$2):
seq(a(n), n=0..25); # after Alois P. Heinz
# second Maple program:
poly:=expand((x*y^4+x^4*y+y^4/x+y/x^4+x/y^4+x^4/y+1/(x*y^4)+1/(x^4*y))^2): z:=1: for n to 100 do z:=expand(z*poly): print(n, coeff(coeff(z, x, 0), y, 0)); end do: # Vaclav Kotesovec, Apr 03 2019
MATHEMATICA
b[n_, x_, y_] := b[n, x, y] = If[Max[x, y] > 4n || x + y > 5n, 0, If[n == 0, 1, Sum[b[n - 1, Abs[x + l[[1]]], Abs[y + l[[2]]]], {l, {{4, 1}, {1, 4}, {-4, 1}, {-1, 4}, {4, -1}, {1, -4}, {-4, -1}, {-1, -4}}}]]];
a[n_] := b[2n, 0, 0];
a /@ Range[0, 25] (* Jean-François Alcover, Nov 01 2020, after Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 31 2015
STATUS
approved