login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, and (p^8 + 5)/6 are prime.
5

%I #13 Sep 08 2022 08:46:11

%S 39367,52163,67103,79631,100981,280547,318457,530711,605123,815401,

%T 833923,834947,928871,1313857,1734067,1750069,1800973,2163979,2427137,

%U 2598119,2611027,2754991,2764187,2836259,3040757,3101309,3118697,3465953,3646693,4014809

%N Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, and (p^8 + 5)/6 are prime.

%H R. J. Mathar, <a href="/A253940/b253940.txt">Table of n, a(n) for n = 1..108</a>

%t Select[Prime[Range[10^6]], PrimeQ[(#^2 + 5) / 6] &&PrimeQ[(#^4 + 5) / 6] &&PrimeQ[(#^8 + 5) / 6] &] (* _Vincenzo Librandi_, Jan 21 2015 *)

%t Select[Prime[Range[300000]],AllTrue[({#^2,#^4,#^8}+5)/6,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jul 15 2021 *)

%o (Magma) [p: p in PrimesUpTo(10^7) | IsPrime((p^2+5) div 6) and IsPrime((p^4+5) div 6) and IsPrime((p^8+5) div 6)]; // _Vincenzo Librandi_, Jan 21 2015

%Y Subsequence of A253925. Cf. A118915, A247478, A253939.

%K nonn

%O 1,1

%A _Zak Seidov_, Jan 20 2015