login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253937
Primes p such that 4+p^7, 4+p^9 and 4+p^11 are also prime.
2
82609, 1032607, 1859479, 2158447, 4952173, 5009593, 5828353, 6779833, 11316859, 11370727, 12786157, 13872853, 14117053, 15082783, 15645697, 15935989, 16715623, 20102569, 21310603, 22106569, 22164253, 23674597, 26012953, 26325613, 29592919, 30086347, 30306637
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 82609:
4 + 82609^7 = 26253762656881427836948640304009173;
4 + 82609^9 = 179162157925737357103123335151825463343651893;
4 + 82609^11 = 1222646797417942588836172615268162579679296234658008213;
all four are prime.
MATHEMATICA
Select[Prime[Range[1, 2000000]], PrimeQ[4 + #^7] && PrimeQ[4 + #^9] && PrimeQ[4 + #^11] &]
PROG
(PARI) forprime(p=1, 1e7, if(isprime(4+p^7) && isprime(4+p^9) && isprime(4+p^11), print1(p, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 19 2015
STATUS
approved