login
Number of (6+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1

%I #4 Jan 16 2015 13:25:23

%S 263476,265117,201331,204420,209862,295098,427510,627452,963880,

%T 1514191,2521112,4297857,7398589,12871519,22452335,38934291,66781746,

%U 113008987,188383014,309220327,499665691,795228954,1247306057,1929511720

%N Number of (6+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally

%C Row 6 of A253841

%H R. H. Hardin, <a href="/A253846/b253846.txt">Table of n, a(n) for n = 1..210</a>

%H R. H. Hardin, <a href="/A253846/a253846.txt">polynomial of degree 16 plus a quasipolynomial of degree 5 with period 24</a>

%F Empirical: a(n) = 11*a(n-1) -57*a(n-2) +187*a(n-3) -438*a(n-4) +770*a(n-5) -1004*a(n-6) +836*a(n-7) +16*a(n-8) -1584*a(n-9) +3490*a(n-10) -4982*a(n-11) +5197*a(n-12) -3551*a(n-13) +69*a(n-14) +4497*a(n-15) -8822*a(n-16) +11410*a(n-17) -11134*a(n-18) +7706*a(n-19) -1848*a(n-20) -4920*a(n-21) +10772*a(n-22) -14140*a(n-23) +14140*a(n-24) -10772*a(n-25) +4920*a(n-26) +1848*a(n-27) -7706*a(n-28) +11134*a(n-29) -11410*a(n-30) +8822*a(n-31) -4497*a(n-32) -69*a(n-33) +3551*a(n-34) -5197*a(n-35) +4982*a(n-36) -3490*a(n-37) +1584*a(n-38) -16*a(n-39) -836*a(n-40) +1004*a(n-41) -770*a(n-42) +438*a(n-43) -187*a(n-44) +57*a(n-45) -11*a(n-46) +a(n-47) for n>71

%e Some solutions for n=1

%e ..0..0..0....0..1..0....0..0..1....0..0..1....0..1..0....0..0..0....0..0..0

%e ..1..1..0....0..0..0....1..0..0....1..0..0....0..0..0....0..0..0....0..0..0

%e ..0..0..0....0..1..1....0..0..0....0..0..1....0..1..0....0..0..0....0..0..1

%e ..1..1..0....0..0..0....1..0..0....1..1..0....1..1..0....1..0..0....0..0..1

%e ..1..1..1....1..0..0....1..0..1....0..0..0....0..0..1....1..0..0....1..0..0

%e ..1..1..0....1..1..1....1..1..1....1..1..1....1..1..1....0..1..1....1..1..1

%e ..0..1..0....1..1..0....0..1..0....1..1..0....1..1..1....1..1..1....0..1..1

%e ..1..1..0....1..1..1....1..1..0....1..0..1....1..1..0....1..0..1....0..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 16 2015