login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253755
Number of (7+1)X(n+1) 0..2 arrays with every 2X2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically
1
315576, 3598487, 17980643, 54890203, 112645903, 199063466, 333213583, 513292307, 740160984, 1027818060, 1385679480, 1806669395, 2293619090, 2872717479, 3557550957, 4334258426, 5205864704, 6210349284, 7365404092
OFFSET
1,1
COMMENTS
Row 7 of A253749
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +4*a(n-4) -12*a(n-5) +12*a(n-6) -4*a(n-7) -6*a(n-8) +18*a(n-9) -18*a(n-10) +6*a(n-11) +4*a(n-12) -12*a(n-13) +12*a(n-14) -4*a(n-15) -a(n-16) +3*a(n-17) -3*a(n-18) +a(n-19) for n>30
Empirical for n mod 4 = 0: a(n) = (77/60)*n^6 + (172183/1536)*n^5 + (19602983/1536)*n^4 + (162387071/384)*n^3 + (1164017641/120)*n^2 - (239316739/4)*n + 100690694 for n>11
Empirical for n mod 4 = 1: a(n) = (77/60)*n^6 + (172183/1536)*n^5 + (19602983/1536)*n^4 + (324603179/768)*n^3 + (37209009587/3840)*n^2 - (93014469101/1536)*n + (52408619321/512) for n>11
Empirical for n mod 4 = 2: a(n) = (77/60)*n^6 + (172183/1536)*n^5 + (19602983/1536)*n^4 + (162320075/384)*n^3 + (290635549/30)*n^2 - (970856271/16)*n + (3304152195/32) for n>11
Empirical for n mod 4 = 3: a(n) = (77/60)*n^6 + (172183/1536)*n^5 + (19602983/1536)*n^4 + (324811223/768)*n^3 + (37239181727/3840)*n^2 - (92096833685/1536)*n + (52080994849/512) for n>11
EXAMPLE
Some.solutions.for.n=1
..0..1....0..0....0..1....0..1....0..0....0..0....0..1....0..0....0..0....0..1
..0..0....0..0....0..0....0..1....1..1....1..1....1..0....1..1....0..0....0..2
..0..0....2..1....0..0....0..1....0..0....2..0....0..0....0..1....1..1....2..2
..0..1....2..0....2..2....0..2....1..1....2..0....2..1....1..2....0..0....0..0
..2..2....1..1....2..1....1..2....2..0....1..0....2..0....1..1....0..1....1..2
..0..0....1..2....2..1....0..1....0..0....2..2....1..1....1..2....2..2....0..1
..1..2....2..2....2..1....2..2....2..2....2..1....2..2....1..2....2..2....2..2
..2..2....1..2....0..2....1..2....1..1....1..2....2..1....1..2....1..2....0..1
CROSSREFS
Sequence in context: A234656 A205984 A253748 * A309238 A153749 A186623
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 11 2015
STATUS
approved