login
A253742
Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock ne-sw antidiagonal difference nondecreasing horizontally and nw+se diagonal sum nondecreasing vertically.
1
81, 450, 1998, 7803, 28107, 95940, 315576, 1011357, 3181653, 9876870, 30368034, 92726271, 281717919, 852821640, 2574980172, 7760330145, 23356488105, 70229896650, 211029428790, 633805512579, 1902926487411, 5711950356300
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 9*a(n-1) - 31*a(n-2) + 51*a(n-3) - 40*a(n-4) + 12*a(n-5).
Empirical g.f.: 9*x*(9 - 31*x + 51*x^2 - 40*x^3 + 12*x^4) / ((1 - x)^2*(1 - 2*x)^2*(1 - 3*x)). - Colin Barker, Dec 17 2018
EXAMPLE
Some solutions for n=4:
..2..0....0..1....1..0....0..2....0..1....0..1....1..1....2..0....0..1....1..2
..1..0....0..2....1..0....1..0....0..0....0..1....0..0....2..1....0..0....2..1
..2..1....0..2....1..0....2..1....1..1....1..1....2..1....2..1....2..2....1..0
..2..1....2..2....2..1....0..0....1..1....2..1....2..1....2..2....2..0....2..1
..2..1....1..1....2..0....1..2....2..2....0..1....2..1....0..2....2..2....1..1
CROSSREFS
Column 1 of A253749.
Sequence in context: A204230 A235441 A235406 * A204223 A205215 A206223
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 11 2015
STATUS
approved