login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1)X(5+1) 0..1 arrays with every 2X2 subblock ne-sw antidiagonal difference unequal to its neighbors horizontally and nw+se diagonal sum unequal to its neighbors vertically
1

%I #4 Jan 09 2015 08:46:43

%S 680,540,618,992,1632,2386,4180,6552,10696,18236,28352,47594,80548,

%T 128248,216740,356714,584026,981652,1609356,2663806,4459244,7313942,

%U 12171062,20237510,33418882,55628622,92193244,152691570,254244632

%N Number of (n+1)X(5+1) 0..1 arrays with every 2X2 subblock ne-sw antidiagonal difference unequal to its neighbors horizontally and nw+se diagonal sum unequal to its neighbors vertically

%C Column 5 of A253698

%H R. H. Hardin, <a href="/A253695/b253695.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-2) +2*a(n-3) +4*a(n-4) +2*a(n-5) -7*a(n-6) -17*a(n-7) -7*a(n-8) -8*a(n-9) -10*a(n-10) +38*a(n-11) +42*a(n-12) +3*a(n-13) +28*a(n-14) +a(n-15) -60*a(n-16) -17*a(n-17) -16*a(n-18) -40*a(n-19) +14*a(n-20) +20*a(n-21) -a(n-22) +16*a(n-23) +8*a(n-24) +4*a(n-26) for n>31

%e Some solutions for n=4

%e ..1..0..0..1..0..0....1..0..0..0..0..1....0..1..0..1..1..0....0..0..0..1..0..1

%e ..0..1..0..0..1..1....0..1..0..1..0..0....1..1..0..1..1..0....0..1..1..1..0..1

%e ..0..0..1..1..0..1....0..1..0..0..1..1....0..1..1..0..0..1....1..0..1..1..1..0

%e ..1..1..0..1..1..0....0..0..1..1..0..1....1..0..0..1..0..1....0..0..1..0..0..1

%e ..0..1..1..0..0..0....1..1..0..1..0..0....0..1..0..1..1..0....0..0..0..1..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 09 2015